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Abstract

JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear
mechanics problems. A set of continuum equations describes the nonlinear mechanics involving
large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations.
The method is implemented in a three-dimensional setting with various methods for accelerating
convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform
strain element is used with hourglass stiffness to control the zero-energy modes. This report
documents the elastic and isothermal elastic-plastic material model. Other material models,
documented elsewhere, are also available. The program is vectorized for efficient performance
on Cray computers. Sample problems described are the bending of a thin beam, the rotation
of a unit cube, and the pressurization and thermal loading of a hollow sphere.
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1. Introduction

1.1 Perspective

JAC3D is a finite element computer program for solving large deformation, tem-
perature-dependent quasi-static mechanics problems in three dimensions. A nonlinear
conjugate gradient technique (CG technique) is used to solve the governing nonlinear
equations. A material model for elastic and isothermal elastic-plastic behavior with
combined kinematic and isotropic hardening is described in this report. Other material
models, documented elsewhere, are also available. An eight-node Lagrangian uniform-
strain element is employed with hourglass stiffness to control the zero-energy modes.

JAC3D is very similar to the two-dimensional program JAC2D [1]. The JAC2D and
JAC3D programs are the result of research to develop a reliable solution algorithm for
solving quasi-static problems which executes efficiently on vector-processing computers.
The nonlinear conjugate gradient method selected has proved to be very effective for
solving three-dimensional problems.

1.2 Background

For the calculation of the nonlinear quasi-static response of solids, there is a need
for efficient and reliable solution methods. In recent years, finite element nonlinear
solutions to static problem have been obtained by using either a modified or unmodified
Newton-Raphson method. Use of these stiffness approaches is troublesome because of
the difficulty in deciding when to reformulate the stiffness matrix to keep the solution
from diverging or to accelerate the convergence. On the opposite end of the spectrum of
solution methods are indirect iterative methods, which do not involve a stiffness matrix.

The impetus to try indirect iterative solvers comes from several sources. First,
a more robust method than the Newton-Raphson algorithm is needed to solve highly
nonlinear problems involving geometric stiffening due to large deformations, stiffening
and softening due to material response, and sudden changes in stiffness due to contact
surface constraints. Second, there is a need to solve three-dimensional problems efficiently
without a severe restriction on the number of elements that can be used because of
hardware limitations in storing and retrieving the stiffness matrix from a magnetic disk.

Some of the motivation for trying indirect solution methods was obtained by obh-
serving the excellent results which explicit methods have produced in solving nonlinear
transient dynamics problems. These methods have been very efficient in terms of com-
puter resources. The data storage and code architecture for dynamics problems are very
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similar to what is needed for indirect solution of statics problems. Examples of effective
explicit dynamics codes include HONDO (2], WULFF {3}, DYNA2D [4], DYNA3D (5],
and recently, PRONTO2D (6] and PRONTO3D [7). The research problem was to apply
these concepts to an indirect solution method that is robust for nonlinear static problems.

In the early 1960s, indirect solution techniques such as successive overrelaxation,
Gauss-Seidel, and Jacobi methods were tried on linear finite element equations. It was
soon discovered that direct solution procedures (Gaussian elimination, for example) were
much more efficient than indirect techniques if the equations were ordered in an ef-
ficient manner. However, only linear or mildly nonlinear problems were being solved
at that time. Rashid reopened the question of whether to use iterative techniques for
three-dimensional problems. His technique is discussed by Irons [8]. Indirect methods,
if successful for two- and three-dimensional problems, could substantially reduce stor-
age requirements and input-output operations when compared to the stiffness method.
Moreover, the code could be highly vectorized, as demonstrated by the explicit dynamics
codes. A reliable iterative method, even if expensive, is superior to a stiffness approach
that does not reliably produce a solution on the first attempt.

After examining and trying various explicit techniques, the CG technique [9, 10, 11]
was selected for solving highly nonlinear solid mechanics problems. These nonlinear ef-
fects include material nonlinearities and geometric nonlinearities due to large rotations,
large strains, and surfaces that zlide relative to one another. The CG technique was se-
lected mainly for its reliability. In particular, convergence for a linear problem is guaran-
teed (with an infinite-precision machine) in N steps, where N is the number of unknowns
in the problem. Also, various investigators in the field of linear programming and opti-
mization are using the CG technique with success on very nonlinear problems [12, 13, 14].
Nonlinear versions of the CG technique are described by Daniel [15] and Bartels (16].
Several acceleration techniques for the linear CG methods are discussed in an article by
Fletcher and Reeves [12]. The JAC3D implementation of the CG technique for solving
nonlinear equations is discussed in Section 3.3.

In this document, the governing equations are formulated in the current configuration
of the body, with particular attention being paid to the rotation of the stress tensor. The
formulation is extremely convenient for the CG method because a stiffness matrix need
not be calculated. Variational statements are then presented that allow a finite element
representation of the equations of equilibrium.

1.3 Program Capabilities

The concepts noted above have been incorporated into the structural mechanics
computer program JAC3D and combined with a variety of ancillary capabilities to result
in a very versatile computer program.




1.3.1 Standard Geometry and Results File Format

As a member of the Sandia National Laboratories Engineering Analysis Code Access
System (SEACAS) [17], JAC3D benefits from the rich computational analysis environ-
ment. Geometry and mesh information for the analysis is read from a file in the GENESIS
format [18], which can be produced by a number of mesh generators and other preproces-
sors. Results are written to a file in the related EXODUS format [19}, which is compatible
with a suite of postprocessors and visualization aids.

1.3.2 Element Birth and Death

The program has the capability to add elements (element birth) and/or delete ele-
ments (element death) at selected times in the solution. This capability has proven to be
an important feature, expecially for evaluating the residual stresses developed as a result
of various manufacturing processes. For example, many electronic assemblies are built
up by using a cascade of soldering steps. Two parts are joined with high-temperature
solder, then a third part is added with a lower melt point solder, and so forth. Using
the element birth capability, this manufacturing process can be realistically modeled,
allowing new parts to appear at each step. In the same manner, changes in residual
stress as the result of milling, drilling, or etching can be realistically modeled with the
element death capability. As another example, mining operations can be modeled with
the element death capability.

1.3.3 Material Models

At the present time, several nonlinear material constitutive models are incorporated
in the program, with only one described here. The model is an isothermal elastic/plastic
model with combined kinematic and isotropic hardening. The other models are docu-
mented separately, and more can be easily added. For a given problem, any or all of the
material models which exist in the code can be used.

As an example, the elastic/plastic model is used extensively to describe the response
of materials used in electronic assemblies. It has been successfully used to describe the
behavior of ceramics, rigid polymers, solder at low temperature, and a host of other

materials.

1.3.4 Initial Stress

Each material may be assigned an initial value for each component of stress in the
reference configuration. The user may also specify a linear variation of stress in the z-
coordinate direction. Initial stresses are typically specified to be in equilibrium with the
initial boundary conditions. As an option, the user may request that the program calen-
late an initial equilibrium state before the first load step. In this case, two equilibrium
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passes are made prior to beginning the load history; the displacements are zeroed out
and the state variables reinitialized after each pass.

1.3.5 Kinematic Constraints

The geometric boundary conditions allow for nodal points to be rigidly fixed in space
and time or to be defined to move in a specified time-dependent manner. This capability
allows for realistic modeling of many quasi-static physical processes. For example, in
electronics assemblies, connectors are often required. The mating of a connector pair can
be described as press-fitting a contact pin into a housing. The requirements are that the
contact force be sufficiently high to maintain electrical continuity; however, the stresses
in the housing must remain linearly elastic so that the connector can be reliably used
over and over. Time-dependent boundary conditions applied to the pin in conjunction
with a contact surface definition between the pin and housing allow this problem to be
modeled easily.

1.3.6 Loads

The program has the capability to apply a variety of mechanical time-dependent
and/or time-constant loads to a model. These loads can be point loads, surface pres-
sures, or body forces (arising from acceleration or electromagnetic fields). With these
definitions, a great variety of mechanical loading applications can be modeled.

1.3.7 Thermal Input

The program has the capability to accept thermal input defining the temperature
history of the structure. The temperature history can be obtained from a separate ther-
mal analysis computer program, or generated with a user-supplied FORTRAN program.
If the temperature history is uniform throughout the structure, it can be generated within
JAC3D itself. Tracking the temperature history is important for a variety of applications.
Residual thermal stresses can be developed during the manufacture of electronic assem-
blies; examples are soldering and brazing. The stresses are developed because of (1) the
difference in the thermal expansion characteristics of the various materials in the assem-
bly, or (2) the transient nonuniform temperature history. During use of the electronic
assembly, the same problem arises as power is applied or removed. In addition, material
response can vary as a function of temperature.

1.3.8 Contact Surfaces

The program can also model contacting surfaces. The contact surfaces can be fixed
together, sliding without friction, or sliding with friction. They can be allowed to close
or open as the solution dictates. This capability allows many physical processes, such
as connector insertion, to be realistically modeled. The “fixed” contact surface has also
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«prov'en'u“fﬁl ot Ipecia , e-di , } :
allows for parts of the stric be very - ely modeled to obtain the required reso-

‘lutlon. The remmnder of the structure, which is reqmred to obtain the global 1 response,
can be modeled coarsely These pa.rts are Jomed by one or more ﬁxed contact surfaces.

1.3.9 Restart

Finally, a capability to restart the solution is also mcorpora.ted The restart can be
used to change many of the problem parameters, thus allowing realistic physical processes
“to be modeled easily. For instance, stresses and deformations are generally developed in
" an electronic assembly due to its manufacture. Use environments impose additional
- stresses and deformations on the assembly. With the restart capability, an analysis of
the ma.nufacturmg euvnronment needs to be completed only one time. Various subsequent
use environments can then be evaluated by restarting from this solution. The stress and
deformation state existing in the restart file should be viewed as a set of equilibrium
initial conditions with which to start a problem.







2. Governing Equations

This chapter gives the continuum mechanics concepts on which the development of
the numerical algorithms in the following chapters is based. Boldface characters denote
tensors. The order of the tensor may be determined from the context of the equation.

2.1 Kinematics

A material point in the reference configuration B, with position vector X occupies
position x at time t in the deformed configuration B. Hence the notation x = ¥(X,¢).
The motion from the original configuration to the deformed configuration shown in Fig-
ure 2.1 has a deformation gradient F given by

ax

F=3x

) [FI>0 . (2.1)

Applying the polar decomposition theorem to F,

F=VR=RU, (2.2)

Figure 2.1. Original, Deformed, and Intermediate Configurations of a Body.

17




where V and U are the symmetnc, pos\twe definite left and nght stretch tensors, re-‘
spectively, and R is a proper orthogonal rotation tensor. Figure 2.1 illustrates the inter-
mediate orientations defined by the two alternate decompositions of F defined by Equa-
tion 2.2. The determination of R follows from the work of Flanagan and Taylor {20].

The incremental algebraic algorithm to determine R is described in Section 4.2.

The velocity of the material point X is written as v = X, where the superposed dot
indicates time differentiation holding the material point fixed. The velocity gradient is
denoted by L and may be expressed as

ov_oviX = ' 23)

L=x=aXax T

The velocity gradient can be written in terms of its symmetric (D) and antlsymmetnc
(W) parts,
L=D+W. (2.4)

Using the right decomposition from Equation 2.2 in Equation 2.3 gives
L=RR" +RUUT'RT . (2.5)
Dienes [21] denoted the first term on the right side of Equation 2.5 by f}: |
0 =RR" . (2.6)

Both W and @ are antisymmetric and represent a rate of rotation (or angular velocity)
about some axes. In general, @ # W. The difference anses when the last term of Equa-
tion 2.5 is not symmetric. The symmetric part of UU™ is the unrotated deformation
rate tensor d as defined below (note that both U and U~ are syuuneiiic).

d= %(I'JU" +U-'0)=R'DR . @2.7)

There are two possible cases that can cause rotation of a material line element: rigid
body rotation and shear. Since total shear vanishes along the axes of principal stretch,
the rotation of these axes defines the total rigid body rotation of a material point.

With vector analysis it can be shown that Equation 2.6 represents the rate of rigid
body rotation at a material point (as shown by Dienes). It can also be shown that W
represents the rate of rotation of the principal axes of the rate of deformation D. Since
D and W have no sense of the history of deformation, they are not sufficient to define
the rate of rotation in a ﬁnite»‘defonmition context.

Line elemeuts where Qhe rate of k,she/a,r vamshes rotate solely due to rigid body ro-
tations. These lme elements are along the principal axes of U. A similar observatlon is
apphed below: for uamg Dxenes expmaron for calculating 1.




(28)

Postmultlplymg by V ylelds an expressron tha.t defines the decomposltlon of L mto v
and 0 :
LV -V + va . (2 9)

When the dual vector of the above. expressrou is taken, the symmetric V vanishes to yield
a set of three linear equatlous for the three independent components of .

The antlsymmetnc pa.rt ofa tensor may be expressed in terms of its dual vector and
the permutation tensor Eijik- Let us define the following dual vectors:

wi = eiikQix (2.10)

w; = euWie - (2.11)

Using Equations 2.4, 2.10, and 2.11 in Equation 2.9 results in the expression that
Dienes gave for determining {3 from W and V:

w=w-2V-ItrV]'z, (2.12)

%= cijijmD,ﬁk . (2.13)

Since = W if and only if the product VD is symmetric, then the principal axes of
the deformation rate D coincide with the principal axes of the current stretch V. Clearly,
a pure rotation is a speclal case of thxs condition since D, and consequeatly the 2; in
Equation 2.13, vamsh

2.2 Stress and Strain Ratyes

- The constitutive model archxtecture is posed in terms of the conventional Cauchy
stress by adoptmg the approach of Johnson and Bammann [22] and defining a Cauchy
stress in the unrotated conﬁgurahon. More detarl than is presented here is found in
Fla.na.gau and Taylor [20). The “true” stress in the deformed configuration is denoted by
T. The Cauchy stress in. the unrotated conﬁgura.tron is denoted by o. These two stress

measures are related by
(2.14)

ation has its own reference frame,
in this frame is a pure stretch. Then

ﬁxed dobal reference fra.mc The conjugate strain rate




measures to T and o are D and d, respectively. These strain rates were defined by
Equations 2.4 and 2.7, respectively.

The principal of Material Frame Indifference (or objectivity) stipulates that a con-
stitutive law must be insensitive to a change of reference frame [23]. This requires that
only objective quantities may be used in a constitutive law. An objective quantity is one
that transforms in the same manner as the energy conjugate stress and strain rate pair
under a superposed rigid body motirn. The fundamental advantage of the unrotated
stress over the true stress is that the material derivative of & is objective, whereas the
material derivative of T is not.

A stress rate, called the Green-Naghdi rate by Johnson and Bammann, can be
derived by transforming the rate of the unrotated Cauchy stress to the fixed global frame
as follows:

6=R6RT=T-QT+TQ . (2.15)

The Green-Naghdi rate is kinematically consistent with the rate of Cauchy stress. This
statement means that & is identical to T in the absence of rigid body rotations.

A distinct advantage of the unrotated reference frame is that all coustitutive models
are cast without regard to finite rotations. This greatly simplifies the numerical imple-
mentation of new constitutive models. The rotations of global state variables (e.g., stress
and strain) are dealt with on a global level, which ensures that all constitutive models
are consistent. Internal state variables (e.g., backstress) see no rotations whatsoever.

The drawback to working in the unrotated reference frame is that the rotation tensor
R must be accurately determined. The incremental, algebraic algorithm to accomplish
this task is described in Section 4.2.

2.3 Fundamental Equations

The quasi-static equations of motion for a body are
V-T+pb=0, (2.16)

where p is the weight density per unit volume and b is a specific (force per weight) body
force vector.

The solution to Equation 2.16 is sought subject to the boundary conditions
u=f(t)on S,, (2.17)

where S, represents the portion of the boundary on which kinematic quantities are spe-
cified (displacement and velocity). In addition to satisfying the kinematic boundary
conditions given by Equation 2.17, the traction boundary conditions must be satisfied as

T-n=s(t)on Sr, (2.18)
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where Sy represents the portion of the boundary on which tractions are specified. The
boundary of the body is given by the union of S, and S, and for a valid mechanics
problem, S, and S have a null intersection.
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iution Procedure

The solutton to the qua.sl-stahc problem, descnbed by Equatlons 2. 16 2.17 and 2 18,
is calculated at dlscrete points in time by obtaining a minimum of a functional I, which
represents the power. mput to the body. The nonlinear conjugate gradient method is used
to minimize the functional, and the finite element technique is employed to discretize the
problem geomctnca.lly The: reader should be familiar with the finite element method. If
~ not, numerous texts on the method such as Bathe and Wilson [24], can be consulted.

31 Tiﬁme Integration Procgdure

Equations 2.16, 2.17 and 2.18 describe a quasi-static theory in which velocities are
retained but the time rates of velocities are neglected. Some quasi-static mechanical pro-
cesses depend on real time, such as those involving viscoelastic and creeping materials.
Others, such as those which involve elastic or elastlc/plastlc materials, proceed indepen-
dently of the amount of time used in the process. In any event, an incremental solution
in time is used to describe the nonlinear process. For the solution increment going from
time t, to t,,1, an interval of time At is used ‘

At = tygr —1n

where n is called the time step (or load step) number.

3.2 The Functional or Objective Function

The goal is to obtain a solution at discrete times by finding the minimum of a
nonlinear functional which represents the fundamental equations. We begin in defining
the functional or objective function by writing the power input to the body (which is
zero for the quasi-static problem) as -

Prput =/5,~i¢,’ds+/ pbiu; dV (3.1)
‘ s

where S denotes the surface and V is the volume of the body in the deformed configura-
tion. A dlscusslou of the power. mput to the body can be found in Malvern [25].

Usmg Equa.tlon 2. 18 the surfwe mtegral in Equation 3.1 can be transformed into

Pﬁ”‘ / [“t(Tm + Pbc) + Tn"s,;] dV




A functional II is now defined by equating Equations 3.1 and 3.2 as
Il= / [ﬁ;Tj,’J + T:,',"l'l,',j] dVv — /S,‘fl; dS =0 . (3.3)
v s

If the equilibrium Equations 2.16 are substituted for Tj;; in Equation 3.3, the second
term is integrated by parts, and the first variation is taken, the result is

8T = / §ii(—pb; — Tyi5) dV — / §ii(3; — 8:)dS . (3.4)
| % S

; The Euler equations are the traction boundary conditions (Equations 2.18) and the state-
¢ ment of equilibrium (Equations 2.16). If, in Equation 3.4, the term involving Tj;; is
integrated by parts, the following first variation is obtained:

&l = / dui(—pb;)dV + / bu; ;T dV — du;s;dS =0 . (3.5)
v Vv 5

St

The minimum of the functional at a specified time will be found with the use of the
nonlinear conjugate gradient procedure. Equation 3.5 is used to determine the gradient
of the objective function (i.e., the residual forces in the body) at each iteration, and the
finite element method is used to discretize the body. Since éu; represents an arbitrary
virtual velocity field, Equation 3.5 is rewritten (with the use of the traction boundary
condition Equation 2.18) as a summation of the contributions of force from each finite
element to obtain

R = Z [‘/‘; :Tz'j(s'l.l;‘,j A% —-[/ pbiéu; dV — i Ej7lj61li dA] . (36)

The summation symbol represents the assembly of element force vectors into a global
nodal force array. It is assumed that the reader understands the details of this assembly.
In general, while iterating towards a solution within a load step, the value of the residual
vector R in Equation 3.6 will not be zero. In fact, convergence is defined by a measure
of how close R is to zero.

3.3 Conjugate Gradient Algorithm

For a quasi-static time step, a trial solution of components of the velocity vector is
substituted into the set of nonlinear Equations 3.6 and the residual vector (the gradient
of the functional II) is obtained:

R(a) = 6T1(a) . (3.7)

In the indirect iterative solution procedure, a set of velocity components is sought that
will make the residual vector zero or acceptably small. The conjugate gradient method
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is used to efficiently obtain directions in which to search for the velocity solution. Using
a form of the conjugate gradient method obtained by combining a linear preconditioned
version [11] and a nonlinear version [16}, the iterative process is started by assuming a
vector of velocity components at the nodes of the finite element mesh, 1;, with j denoting
the iteration number. The residual vector, the gradient of the functional, becomes

R; = R(i;) . (3.8)

A preconditioning matrix M (the diagonal of the linear stiffuess matrix) is introduced to
define a generalized gradient vector Z as follows:

M. Z,=R; . (3.9)

The conditioning is helpful when the body contains materials of different stiffness or
elements of widely varying sizes.

If 7 = 0, the initial search direction is the negative of the gradient, the steepest
descent direction Py:

Po=—2y=-M1 (3.10)

Subsequently, for j > 0, search directions that are conjugate to the previous direction

are chosen as follows:

P;=-Z;+ p;Pj1 (3.11)
where f3; has the value

g = ZTM w(Z; — Zj—1)

7T 1_1 MnZJ—l
Equation 3.12 is a generalization of a method known as the Polak-Ribiére algorithm, as
discussed by Powell [14]. The variables % are then updated by searching for the least
value of II(%) from % along the direction P;. Therefore

12_,'+1 = ‘l.lj + CYjPJ' (3.13)

(3.12)

where ¢; is the value that minimizes the function of one variable. (The process of finding
«; is known also as a line search.) Therefore

R(aj) = 6“(&1 + Otij) (3.14)

After calculating Equation 3.13, if the residual R is not acceptably small, another itera-
tion is begun. Efficient use of the conjugate gradient method greatly depends upon the
cost of the line search (calculating «).

3.4 Gradient Calculations

The cost of solving problems with the conjugate gradient method is dominated by the
cost of gradient calculations. There are two places in the conjugate gradient procedure
where. gradient calculations are needed. The first occurs in computing Equation 3.8,
the residual force vector, for each iteration. The second set of gradient calculations is
required when performing the line search represented by Equation 3.14.




3.4.1 Residual Force

The calculation of the residual force vector or gradient of the objective function,
Equation 3.6, is accomplished by calculating contributions of force from several sources.
Forces are caused by the state of internal stress, artificial forces to stabilize singular
modes of elements (hourglass modes), external applied tractions, internal body forces,
and externally applied point loads. The specific method of calculating these forces varies
with the element type, as described in Chapter 4.

3.4.2 Line Search

It is necessary to find a; which will minimize Equation 3.14. Equation 3.14 is
nonlinear in a;, and it is often solved iteratively for o; using Newton’s method. However,
if the problem is highly nonlinear, Newton’s method can take many iterations. This
requires many residual calculations which will dominate the cost of an analysis. Following
Bartels and Daniel [16], the minimization solution can effectively be approximated by
one step of Newton’s method starting with a; = 0. The Newton process will result in
the following expression for «;:

ZJ-T M,Z;
Q= A2
’ PfRp

The term Rp, represents a residual calculation with the P; vector substituted for the
velocity vector. The material constitutive model is required to supply a secant modulus
array for use in calculating Rp,;. If the material model cannot supply a secant modulus,
then it is approximated using the elastic moduli of the material. The use of the secant
modulus and the single-step Newton’s method to perform the line search has proven to be
very economical when the material responds according to the elastic/plastic constitutive
law. If the problem is linear, both geometrically and in material response, then the
single-step Newton’s method performs an exact line search for o;.

(3.15)

3.5 Restarting the Algorithm

The algorithm described in Section 3.3 draws its strength from finding new search
directions which are orthogonal (or conjugate) to those already taken. In some highly
nonlinear probleins, however, this can become a drawback.

The problem comes when the nonlinear functional 611 which depends on u as well as
on 1 has changed enough from g to i, or when roundoff error or other approximations
have accumulated to the point that the solution that minimizes Equation 3.8 may have
substantial components in directions that have already been searched. This becomes
apparent when no further reduction in the size of the residual is obtained even after a
great many iterations, or when the residuals begin growing very large (“blowing up”). In
such cases one must start the algorithm over again using a new (perhaps closer) initial
guess.
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In such cases, the program can pick a new initial guess “on the fly,” selecting as its
new guess the vector u; . which has produced the smallest residual R, so far in the
current load step. Three parameters governing this strategy may be adjusted using the
following input record:

CGRESET LIMITS itstrt, itrset, tolfac

First, the new guess u;,,, must differ enough from the original guess o that it will
produce better results. The first parameter, itstrt, specifies how many iterations to wait
before looking for a minimum residual. i.e., it is required that jy, > itstrt. The default
value is one percent of the number of degrees of freedom: for a 1000-node problem, itstrt
would default to 30.

The next problem is to decide when to give up on the current CQ iteration series
and try a new guess. Currently two situations are targeted: (1) many iterations with
no further reduction in residual size, and (2) a large increase in residual size, indicating
divergence. The second CGRESET LIMITS parameter, itrsef, specifies the number of
iterations to allow between finding a minimum and restarting the CG algorithm. The
default value of itrset is half the number of degrees of freedom. The third parameter,
tolfac, defines how much growth in the residual norm indicates divergence. Its default is
1000, meaning that if the norm of the residual grows three orders of magnitude from its
minimum value so far, restart the algorithm. Both these defaults are intentionally loose,
so that the restart logic will provide a safety net without interfering with a properly-
functioning CG solution.

In the extreme, setting itstrt to 0 and itrset to 1 results in restarting the CG algorithm
every iteration. This reduces the iteration scheme to the steepest descent method, always
moving the solution in the direction of the current residual. Convergence of the steepest
descent method is often much slower than that of the conjugate gradient method. The
CG algorithm needs a “long leash” to function properly; if the CGRESET LIMITS are
set too tightly, the convergence rate will suffer accordingly, approaching that of the
steepest descent method. For a problem that is just not converging very well, watching
the progress of the iterations with ITERATION PRINT turned on should indicate what
CGRESET LIMITS may be most helpful. It may be beneficial to reduce the size of the
load step and/or adjust the TRIAL VELOCITY FACTOR as well.

3.6 Convergence

Global convergence at the end of a time step is defined to have taken place when
any of the following inequalities is satisfied:

LAl -
< TOLR, (3.16)
Il

[|R;|| < RESIDF,

(3.17)
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or
Ll =l ll oy (3.18)
lli;l

[l - || denotes the L, norm of a vector. In Equation 3.16, F, is a vector containing the
applied tractions, body forces (gravity forces), thermal forces, and the reactions at nodes
where nonzero displacement boundary conditions are applied. Equation 3.17 provides a
convergence check for situations where the applied loads are small or nonexistent (i.e.,
when unloading to a zero load). Equation 3.18 is used to measure the change in the veloc-
ity vector due to one conjugate gradient iteration. Its main purpose is stop the solution
attempt if little progress is being made towards a solution. The velocity convergence
criterion should not be relied upon as a statement that the problem is to a state which is
close to equilibrium. However, Equations 3.16 and 3.17 are good measures of how close
the problem is to a state of equilibrium. The program will terminate iterations for the
load step if any of these conditions is satisfied. The default tolerances for Equations 3.16
and 3.18 are 1.0 x 10~ and 1.0 x 10712, respectively, whereas RESIDF in Equation 3.17
defaults to zero.

If none of the above conditions is satisfied within the user-supplied MAXIMUM IT-
ERATIONS, the program will first go back to the iterate ;_, that produced the smallest
residual during the load step iterations. If the relative size of the corresponding residual
R;.,. is less than the user-specified MAXIMUM TOLERANCE, then u;,,, is accepted and
the program will proceed to the next load step. If not, 1;,,, is written to the plot file and
the analysis is terminated. The default value for MAXIMUM ITERATIONS is the number
of degrees of freedom, while MAXIMUM TOLERANCE defaults to zero.
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4. Finite Element Calculations

To define an isoparametric finite element, the spatial coordinates x; are related to
the nodal coordinates z;; through the isoparametric shape functions ¢; as follows:

x; = z;191(€,1,€) - 4.1)

In accordance with indicia! notation convention, repeated subscripts imply summation
over the range of that subscript. The lowercase subscripts have a range of three corre-
sponding to the spatial coordinate directions. Uppercase subscripts have a range corre-
sponding to the number of element nodes.

The same shape functions are used to define the element displacement field in terms
of the nodal displacements u;;:

u; = uirdr . (4.2)

Since the same shape functions apply to both spatial coordinates and displacements, their
material derivative (represented by a superposed dot) must vanish. Hence, the velocity
field may be given by

u; = u;pPr . (4.3)
The velocity gradient tensor L is defined in terms of nodal velocities as
Lij =t = tiydy; - (44)

By convention, a comma preceding a lowercase subscript denotes differentiation with
respect to the spatial coordinates (e.g., u;; denotes du;/dz;).

4.1 Element Library

Two element types are currently included in JAC3D: one continuum element and
one structural element. The continuum element is an eight-node uniform strain element.
The structural element is a two-node elastic truss.

4.1.1 Eight-Node Uniform Strain Element

The eight-node three-dimensional isoparametric element is widely used in compu-
tational mechanics. The determination of optimal integration schemes for this element,
however, presents a difficult dilemma. A one-point integration of the element under-
integrates the element, resulting in a rank deficiency that manifests itself in spurious
zero energy modes, commonly referred to as hourglass modes. A two-by-two-by-two in-
tegration of the element over-integrates the element and can lead to serious problems of
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element locking in fully-plastic and incompressible problems. The eight-point integration
also carries a tremendous computational cost penalty compared to the one-point rule. In
JAC3D a one-point integration of the element is used and implemented with an hour-
glass control scheme to eliminate the spurious modes. The development presented below
follows directly from Flanagan and Belytschko [26].

The 3-D isoparametric shape functions map the unit cube in &-space (¢ is written
explicitly as (£,7,()) to a general hexahedron in z;-space, as shown in Figure 4.1. The
unit square is centered at the origin in §; space so that the shape functions may be
conveniently expanded in terms of an orthogonal set of base vectors, given in Table 4.1,
as follows:

1 1 1 1 1 1 1 |
1= gZ1+ 26Ar + 7nhar + 7(Asr + 50CTr + 5¢€Tar + 5énTar + 58n¢Tar - (4.5)

Note that the notation follows that used by Flanagan and Belytschko. In their work the
¢ range from —3 to 1 .

The above vectors represent the displacement modes of a unit cube. The first vector,
¥, accounts for rigid body translation. ¥ is called the summation vector because it may
be employed in indicial notation to represent the algebraic sum of vector components.

The linear base vectors denoted by A;; may be readily combined to define three
uniform normal strains and three rigid body rotation modes for the unit cube. The Ay
are referred to as the volumetric base vectors since, as is illustrated below, they are the
only base vectors which appear in the element volume expression.
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Figure 4.1. Mode Shapes for the Eight-Node Constant Strain Hexahedral Element.
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Table 4.1. Orthogonal Set of Base Vectors

Node 3 n ¢ X1 Ay Ay Ay Ty Ty Ty Ty
1 -5 -5 -5 -1 -1 -1 1 1 1 -1

1 -1 -1 1 -1 -1 1
1 1 -1 -1 -1 1 -1
-1 1 -1 -1 1 -1 1
-1 -1 1 -1 -1 1 1

A

ot

&

L

ot
e e o Y

1 1
1 1 1 1 1 1 1
1

The last four vectors denoted by I',; (Greek subscripts have a range of four) give rise
to linear strain modes that are neglected in the single point integration. These vectors
define the hourglass patterns for a unit cube. Hence, the I'y; are referred to as the
hourglass base vectors. The displacement modes represented by the vectors in Table 4.1
are also shown in Figure 4.1.

The first integral in Equation 3.6 is used to define the element internal force vector
firas

St fir = / T;;61;;dV . (4.6)
Ve
The second and third integrals define the external force vector.

One-point integration is performed by neglecting the nonlinear portion of the element
velocity field, thereby considering a state of uniform strain and stress. The preceding
expression is approximated by

fu = Tij/y é1,;dV , (4.7)

where the arbitrary virtual velocities are eliminated, and T;; represents the assumed
uniform stress field, which will be referred to as the mean stress tensor. Neglecting the
nonlinear velocities results in the mean stresses depending only on the mean strains.
Mean kinematic quantities are defined by integrating over the element as follows:

- 1 . :
Ui =y _/V , Ui av . (4.8)
The discrete gradient operator is defined as

B = /; $1:dV .




The mean velocity grd&ient, applying Equation 4.4, is given By |

. 1. :
ﬁ‘d = —u;,B,-, . (410)

<

Combining Equations 4.7 and 4.9, the nodal forces are expressed by
fa=T;B;1 . (4.11)

Computing nodal forces with this integration scheme requires evaluation of the gra-
dient operator and the element volume. These two tasks are linked since

(4.12)

Zi5 = 0ij 5

where §;; is the Kroneker delta. Equations 4.1, 4.9, and 4.12 yield

i Bj1 = /v (ziadi),; dV =V§; . (4.13)

Consequently, the gradient operator may be expressed by
_ov
'™ 9z

B; (4.14)

To integrate the element volume in closed form, the Jacobian of the isoparametric
transformation is used to transform to an integral over the unit cube:

+1 i 4k
V=/ dV=/ / JdCdnde . (4.15)
v -+ J-4 J-4
The Jacobian is given in terms of the alternator e;;; as
9z By 02 "
J=¢; 4.16
% 38, n; 3y (#.16)

Therefore, Equation 4.15 can be written as

V =2z1y52xkCrik » (4.17)

o+t 4 94,0450
Crix = €ij / / / a?.l a?,: a‘?‘ d¢dpdt . (4.18)

where

Observe that tf\e coefficient array C}, is identical for all hexahedrons. Furthermore,
it possesses the alternator properties as given below:

Crx = CJ{(I = Ckiy = ~Ciks = —Cyix = —Cxkur . (4.19)




Therefore, applying Equatlons 4 14 and 4.19 to 4.17 yxelds the followmg form for evalu-
ating the B-matrix:

Yizk
By = | zszx | Crak . (4.20)
LIYK

In light of Equation 4.5, it is evident that evaluating each component of Cj x involves
integrating a polynomial that is at most bi-quadratic. However, since integration is over
a symmetric region, any term with a linear dependence will vanish. The only terms to
survive the integration will be the constant, square, double square, and triple square
terms. Furthermore, the alternator properties cause half of these remaining terms to
drop out. The resulting expression for Cjx is

1
Cuk = Tog ik (BAirAjuhik + Aitlial ik + CusAjuTixe + TirligArk) (4.21)

The above expression is evaluated using Table 4.1, after which practical formulas
for computing the B-matrix and volume are developed. Since Cjjx has the alternator
properties given in Equation 4.19, only 56 distinct nonzero terms (combinations of eight
nodes taken three at a time) are possible. However, the volume must be independent of
the selection of node 1, which implies that Cpx is invariant if the nodes are permuted
according to Table 4.2. Consequently, only 21 terms (combinations of seven nodes taken
two at a time) may be independent. Furthermore, once node 1 is selected, three ori-
entations of the node numbering system are possible, as given by the pennutatwus in
Table 4.3. Therefore, only seven terms of C1yjx need be evaluated.

Seven independent terms of Cjjx are listed in Table 4.4. These terms may be
evaluated via Equation 4.21 and Table 4.1. Only three of these seven terms do not
vanish, as indicated in Table 4.4. All other nonzero terms of Cj k are found by permuting
the nodes according to Table 4.2 and using the alternator properties of Equation 4.19.
Alternatively, the nonzero terms may be generated by applying antisymmetry (Cryx =
—~CikJ) to Table 4.4, then permuting according to Tables 4.3 and 4.2, successively. The

---iatter scheme straightforwardly results in formulas for computing the B-matrix.

The first term of B;; is expressed as

By, l [.'h[(ze — 23) — (24 — 2z5)] + y3(22 — 24) + Yal(2z3 — 28) — (25 — )]

12 ;
+ ysl(2s — 26) — (22 — 24)] + yo(25 — 22) + ya(24 — 25)] (4.22) |

Other terms of B;; are evaluated using the same formula after permuting the nodes
according to Tablz 4.2 and, subsequently, permuting the coordinate axes according to
Table 4.5. The element volume is most easily computed by contracting the B-matrix and

nodal coordmateu 38 per Equatlon 4. 13




Nodal Permutations
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Hourglass Control Algorithm

The mean stress-strain formulation of the uniform strain element considers only a
fully linear velocity field. The remaining portion of the nodal velocity field is the so-called
hourglass field. Excitation of these modes may lead to severe, unresisted mesh distortion.
The hourglass control algorithm described here is taken directly from Flanagan and
Belytschko [26]. The method isolates the hourglass modes so that they may be treated
independently of the rigid body and uniform strain modes.

A fully linear velocity field for the hexahedron can be described by
t'tl-i" = ‘li,' + t:ii,j(:tj - :'ij) . (4.23)
The mean coordinates &; correspond to the center of the element and are defined as

f,- = lx,-,zl . (424)

(o <]

The mean translational velocity is similarly defined by

. 1
Uy = -8-!2.'121 . (4.25)

The linear portion of the nodal velocity field may be expressed by specializing Equa-
tion 4.23 to the nodes as follows:
'ul:;l = zi,-Z, + 'lig,j(.'ltj] - .'i‘jZ]) , (4.26)

where X; is used to maintain consistent index notation and indicates that i; and ;
are independent of position within the element. From Equations 4.10 and 4.26, and the
orthogonality of the base vectors, it follows that

w15 = uiPY; = 8iy (4.27)
and ‘ -
;Bj = WP B = Viig; . (4.28)

The hourglass field itt-',‘ may now be defined by removing the linear portion of the nodal
velocity field:

UpF =ty — Uj (4.29)

Equations 4.27 through 4.29 prove that £; and Bjj are orthogonal to the hourglass field:
ul‘,‘E, =0 (4.30)

ﬁ?fBj] =0 . (4.31)

Furthermore, it can be shown that the B-matrix is a linear combination of the volumetric
base vectors A;;, so Equation 4.31 can be written as

WA =0 . (4.32)




Equations 4.30 and 4.32 show that the hourglass field is orthogonal to all the base vectors
in Table 4.1 except the hourglass base vectors. Therefore, 7f may be expanded as a linear
combination of the hourglass base vectors as follows:

. 1. .
u?f = '-\/gq.'al‘az . (4.33)
The hourglass nodal velocities are represented by ¢;, above (the leading constant is added

to normalize T4;). The hourglass shape vector v,; is defined such that

1
Tia = —=Uil Vel - 4.34
io =~ T (4.34)

By substituting Equations 4.26, 4.29, and 4.34 into 4.33, ther multiplying by I'y; and
using the orthogonality of the base vectors, the following is obtained:

Uil ot — % 5251 ot = %irvar (4.35)

With the definition of the mean velocity gradient, Equation 4.10, the nodal velocities
above are eliminated. As a result, v,; is computed from the following expression:

1
Yoi = Lar = VanuPaJ (4.36)

The difference between the hourglass base vectors I'y; and the hourglass shape vec-
tors v,s is very important. They are identical if and only if the hexahedron is a right-
parallelepiped. For a general shape, Iy, is orthogonal to B;; while v,; is orthogonal to
the linear velocity field 4. While I',; defines the hourglass pattern, 7,7 is necessary to
accurately detect hourglassing.

For the purpose of controlling the hourglass modes, generalized forces @, are defined
conjugate to ¢, so that the rate of work is

. 1 .
W fif = 'Z"Qiaqia (4.37)

for arbitrary ;7. Using Equation 4.34, it follows that the contribution of the hourglass
resistance to the nodal forces is given by

g .
S = ‘2°Qia7a1 . (4.38)

In JAC3D, an artificial stiffness resistance is used. In terms of the user-specifiable
parameter &, the resistance is given by

B K ‘B. B; .
Qia = W‘Zy—”—vi'-qia : (4.39)




Note th&t the . expreulou muat be mtegrated whlch reqmres tha.t this resistance
be stored in & global array. The term i is an effective shear modulus and is described
below.

Observe that the nodal antlhourglass foroes of Equation 4.38 have the shape of Yal
rather than T',;. This fact is essential, since the antihourglass forces should be orthogonul
to the linear velocity field to prevent energy from being transferred to or from the rigid
body and umform strain modes by the antxhourglassmg scheme.

Determination of Eﬂ"ective ‘Shear Modulus

The algorithm for calculating hourglass control requires an effective shear modulus.
In JAC3D the followmg algorithm, similar to that found in PRCNTO3D [7], is used for
adaptively determmmg an effective shear modulus of the material.

The coustitutive response over a. time step ca.n be cast as a hypoelastic relationship,
and approximated as isotropic. This defines an effective shear modulus j in terms of the
hypoelastic deviatoric stress and strain increments as follows:

(4.40)

Si = 2ﬁeijAt ’

where

85 = Ad’ij - %Aﬂkkb}j (441) *.
and ,
eij = dij — 2dudi; . (4.42)

Taking the inner prbduct of Equation 4.40 with the deviatoric strain rate and solving for
the effective shear modulus 24 gives

- = % 4.43
2”' EmnemnAl ( )

If the strain increments are insignificant, Equation 4.43 will not yield numerically mean-
ingful results. In this circumstance, JAC3D sets the effective shear modulus to an initial
estimate, uo. The effective modulus is not allowed to be greater than gy or less than

Po X 10-2.

4.1.2 Truss Element

. To determine ’the couﬁibutiou to nodal forces from the deformation of a truss ele-
ment, the strain ¢ is’calculate‘d as follows:
ln+l =iy , (4.44)
‘ R ln+l/2

- where is the length of the element. The subscript n + 1/2 denotes the length calculated
midway through the load step. Once the stress in the truss has been determined from

e =




es, the global components of force at the nodes are calculated by multiplying the stress
times the truss cross-sectional area, and resolving the resulting axial force in the truss
into global components based on the truss orientation. Changes in cross-sectional area
due to elongation of the truss are not accounted for.

4.2 Finite Rotation Algorithm

As stated in Section 2.2, one of the fundamental numerical challenges in the devel-
opment of an accurate algorithm for finite rotations was the determination of R, the
rotation tensor defined by the polar decomposition of the deformation gradient F. An
incremental algorithm is used for reasons of computational efficiency and numerical accu-
racy. This algorithm is identical to that used in PRONTO3D by Taylor and Flanagan [7).
The validity of the unrotated reference frame is based on the orthogonal transformation
given by Equation 2.14. Therefore the crux of integrating Equation 2.6 for R is to main-
tain the orthogonality of R. If one integrates R = QR via a forward difference scheme,
the orthogonality of R degenerates rapidly no matter how fine the time increments. The
algorithm of Hughes and Winget [27)] is adopted for integrating incremental rotaticns as
follows. ’

A rigid body rotation over a time increment At may be represented by
Xepar = QaXs , (4.45)

where Q4 is a proper orthogonal tensor with the same rate of rotation as R given by
Equation 2.6. The total rotation R is updated via the highly accurate expression below.

RH—At = QAth (4~46)

For a constant rate of rotation, the midpoint velocity and the midpoint coordinates

are related by

1 1
'-A—t(XH.At - Xg) = EQ(XH.At + Xt) . (447)

Combining Equations 4.45 and 4.47 yields

(Qa¢ ~ Ix = S-0(Qac + D, . (4.48)

Since x, is arbitrary in Equation 4.48, it may be eliminated. Solving for Qa,,,
At \7! At
Q= (1.. _2-.9) (1+ Tn) . (4.49)

The accuracy of this integration scheme is dependent upon the accuracy of the mid-
point relationship of Equation 4.47. The rate of rotation must not vary significantly over
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the time increment. Furthermore, Hughes and Winget [27] showed that the conditioning
of Equation 4.49 degenerates as fl1A¢ grows.

The complete numerical algorithm for a single time step is shown in Table 4.6. This
algorithm requires that the tensors V and R be stored in memory for each element.

Table 4.6. Finite Rotation Algorithm

. Calculate D and W

ot

2. Compute 2; = €;xVim D
w=w-2[V-ItrV] 'z
Qi; = Jeijrwr

3. Solve (I - %"“)RH.Ag = (I + %Q)Rt

4. Calculate V = (D+ W)V -VQ
5. Update  Vipar=Vi+ AtV

6. Compute d =RTDR

7. Integrate & =f(d,o)

8. Compute T =RoRT







5. Constitutive Models

The JAC3D program is written in modular form so that different material models can
be added in the future. At the present time there are seven continuum material models
and one truss model, although the isothermal elastic/plastic model is the only continuum
model described here. Since each model is in some sense an independent module, each
may be separately documented Verification problems similar to those given in Chapter 8
should be included in the documentation. The input instructions given in Appendix A
contain documentation references for the other models. Instructions for adding a rew
material model are given in Appendix C.

The function f in step 7 of Table 4.6 represents a stress-strain relationship. The main
assumption is that the strain rate is constant from time ¢,_; to t,,. During each conjugate
gradient iteration the latest values of the kinematic quantities are used to update the
stress. All material models are written in terms of the unrotated Cauchy stress o and
the deformation rate d in the unrotated configuration.

When calculating linear elastic material response, Hooke’s law is used. In a rate
form, this is written as

6 = Atrd)§+ 2ud ,

where A and p are the elastic Lamé material constants.

5.1 Elastic/Plastic Material with Combined Hardening

The elastlc/plastlc model is based on a standard von Mises-type yield condition
and uses combined kinematic and isotropic hardening. It behaves elastically if no yield
stress is input. A very thorough description of this model is found in the PRONTO3D
manual {7}, The description is repeated here for completeness.

5.1.1 Basic Definitions and Assumptions

Some definitions and assumptions are outlined here. Referring to Figure 5.1, which
geometrically depicts the yield surface in deviatoric stress space, the backstress (the
center of the yield surface) is defined by the tensor @. If & is the current value of the
stress, the deviatoric part of the current stress is

S—d—ltraﬁ (5.2)

The stress dxﬂ'erence is then measured by subtracting the backstress from the deviatoric

stress by
E=8S-a. (5.3)

4]




Figure 5.1. Yield Surface in Deviatoric Stress Space.

The magnitude of the deviatoric stress difference R is defined by

R=i¢ll = v§€:¢, (5-4)

where the inner product of second order tensors is S: 8§ = 5i9i;. Note that if the
backstress is zero (isotropic hardening case) the stress difference is equal to the deviatoric
part of the current stress S.

The von Mises yield surface is defined as
fle)=3£:6=4%, (5.5)

and the von Mises effective stress & is defined by

7=1/2:¢£ . (5.6)

Since R is the magnitude of the deviatoric stress tensor when a = 0, it follows that

R=V3r=\[15 . (5.7)
The normal to the yield surface can be determined from Equation 5.5

Qo /oe _¢
1o//6aT = R

(5.8)




1t i aseumed that the strain rate can be decomposed into elastic and plastic parts
by an additive decomposition = bt ,

| | d=d+d" et C(59)
and that the plastic part of the strain rate is given by a normality condition ' ‘

i F=yq B0y
where the scalar multiplier 7 is to be determined.

A scala}' measure of equivalent plastic strain rate is defined by
=\ [2ge; gpi (5.11)

which is yc‘hos(en such that
: o =o:d" . (5.12)

The stress rate is assumed to be purely due to the elastic part of the strain rate and
is expressed in terms of Hooke’s law by

6 = Atrd™)6 + 2pd” (5.13)
where A and p are the Lamé constants for the material.
In what follows, the theory of isotropic hardening, kinematic hardening, and com-
bined hardening is described.
5.1.2 Isotropic Hardening

In the isotropic hirdening casé, the backstress is zero and the stress difference is
equal to the deviatoric stress S. The consistency condition is written by taking the rate

of Equation 5.5: )
o f(o) = 2 . (5.14)

The consistency condition requires that the state of stress must remain on the yield
surface at all times. The chain rule and the definition of the normal to the yield surface
given by Equation 5.8 is used to obtain

%"Q:é (5.15)
(5.16)

(5.17)

43




Note that because S is deviatoric, $:6=8S: S and
(5.18)
Then Equation 5.17 can be written as

k= \[1o= 20 (5.19)

where H' is the slope of the effective stress versus equivalent plastic strain (& vs. &).
This may be derived from uniaxial tension test data as shown in Figure 5.2.

The consistency condition (Equation 5.17) and Equation 5.19 result in

\/'-ng'«iP’ =Q:s . (5.20)

The trial elastic stress rate 6* is defined by

#=C:d (5.21)

where C is the fourth-order tensor of elastic coefficients defined by Equation 5.13. Com-
bining the strain rate decomposition defined in Equation 5.9 with Equations 5.20 and 5.21
yields

\/gﬂ’tf"l =Q:6" - Q:C:d". (5.22)

€ Epl

[
EE
E-E'

H =

Figure 5.2. Conversion of Data From a Uniaxial Tension Test to Equivalent Plastic
Strain Versus von Mises Stress.




Since Q is deviatoric, C: Q = 24Q and Q: C: Q = 2u. Then using the normality
condition (Equation 5.10), the definition of equivalent plastic strain (Equation 5.1 1), and
Equation 5.22,

AH'y=Q:6" — 2uy (5.23)
and since Q is deviatoric (Q: 6 = 24Q : d), v is determined from Equation 5.23 as
1
¥ = Q H d . (5.24)

(1+ )

The current normal to the yield surface Q and the total strain rate d are known
quantities. Hence, from Equation 5.24, 4 can be determined and then used in Equa-
tion 5.10 to calculate the plastic part of the strain rate. With the additive strain rate
decomposition and the elastic stress rate of Equations 5.9 and 5.13, this completes the
definition of the rate equations.

The means of integrating the rate equations, subject to the constraint that the stress
must remain on the yield surface, still remains to be explained. How that is accomplished
will be shown in Section 5.1.5.

5.1.3 Kinematic Hardening

For kinematic hardening, the von Mises yield condition is written in terms of the
stress difference §:

f)=16:6=w . (5.25)

It is important to remember that both ¢ and the back stress a are deviatoric tensors.
The consistency condition for kinematic hardening is written as

fe)=o0 (5.26)

because the size of the yield surface does not grow with kinematic hardening (£ = 0).
Using the chain rule on Equation 5.26,

%{- €=0 (5.27)
- of = l af Q=RQ . (5.28)
o€~ ||og]| % ="
Combining Equations 5.27 and 5.28 and assuming that R # 0,
Q:£=0 (5.29)
(5.30)




A geometric interpretation of Equation 5.30 is shown in Figure 5.3 where it can be seen
that the backstress moves in a direction parallel to the normal to the yield surface.

The back stress rate & must now be defined. Recall that for the isotropic hardening
case (Equation 5.20),

Q:é = \3H'P = 3H'y . (5.31)
The kinematic hardening condition assumes that

&= ¢d” = $1Q, (5.32)

where ¢ is a material parameter. If ¢ is chosen to be %H’, Equations 5.32 and 5.30
give a result identical to the isotropic hardening case (Equation 5.31). Hence, either
Equation 5.31 or 5.32 gives us a scalar condition on &. Note that both of these are
assumptions and must be shown to be reasonable. Experience with material models
based on these assumptions has shown that, in fact, they are reasonable representations
of material behavior.

Using Equation 5.32, Equation 5.9 (the strain rate decomposition), and Equa-
tion 5.13 (the elastic stress rate) in Equation 5.30 (the consistency condition for kinematic
hardening) gives

Q:(6"-C:d™)=Q:2H'yQ (5.33)
Q: é
- o™

Figure 5.3. Geometric Interpretation of the Consistency Condition for Kinematic
Hardening.




After using the normality condition (d” = ¥Q), we note that because Q is deviatoric,
C:Q = 24Q. Solving Equation 5.33 for v then gives

1

LTy

——Q:d (5.34)
which is the same result as was obtained for the isotropic hardening case.

5.1.4 Combined Isotropic and Kinematic Hardening

For the combined hardening case we define a scalar parameter 3, ranging from 0 to
1, which determines the relative amount of each type of hardening. Figure 5.4 illustrates
the uniaxial response to reversed loading which results from different choices of 3. When
8 = 0, only kinematic hardening occurs and when 8 = 1, only isotropic hardening occurs.

The results derived for the independent hardening cases are multipled by the ap-
propriate fraction for each type of hardening. Equations 5.19 and 5.32 are rewritten
as

R=,/3H'd (5.35)

a=2H'd"(1~8)=LH"vQ(1-B) . (5.36)

8
0
B~

Figure 5.4. Effect of the Hardening Parameter # on Uniaxial Response.




As before, the consistency condition is
Q:é=R (5.37)
or
Q: (§-a) = \BH'®S . (5.38)

Recall, as before, that Q: S§ = Q:(6' —yC:Q), using the elastic stress rate, the additive
strain rate decomposition, and the normality condition. Together with Equations 5.36
and 5.11, this transforms Equation 5.38 into

Q:6"—4Q:C: Q- 1H'(1-A)Q:Q = \/2H'B/3(Q):(1Q) . (5.39)

Solving for 7,

1
¥ = —mQ:d (5.40)
‘ (1+3)
which is the same result as was obtained for each of the independent cases.

The following is a summary of the governing equations for the combined theory:

6 = C:(d-d")=6" - 2uvQ (5.41)
ko= B3 = g2H'y (542
& = (1-ppH'd (5.43)
pl _ 0 (elastic), if f(£) < 2 )
¥ = { 7Q (plastic), if f(§) > «* (5.44)
1 2 AR
1= arm (5.45)
_ olfee _¢ ,
Q= \of/oell — R (5.46)

5.1.5 Numerical Implementation

The finite element algorithm requires an incremental form of Equations 5.41 through
5.46. Additionally, an algorithm must be used that integrates the incremental equations
subject to the constraint that the stress remains on the yield surface.

The incremental analogs of Equations 5.41 through 5.43 are
Oyl = o':;r+] - Q”A'YQ (547)

Rut1 = Ry + 2BH'Ay (5.48)
and
an+1 = Qy, + (l - ,B)%H’A’YQ (5.49)
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where A7 represents the product of the time increment and the equivalent plastic strain
rate (Ay = 7At). The subscripts n and n + 1 refer to the beginning and end of a time
step, respectively.

An incremental analog is needed for the rate forms of the consistency condition given
by Equations 5.14, 5.26, and 5.38. At the end of the time step, the stress state must be
on the yield surface. Hence, the incremental consistency condition is

Ay + Ry Q=841 . (5.50)
Equation 5.50 is depicted graphically in Figure 5.5.

Substituting the definitions given by Equations 5.47 through 5.49 into the consis-
tency condition of Equation 5.50,

[on + (1 - B)2H'AYQ] + [R, + 2H'AY] Q =S}, — 2uA1Q . (5.51)
Taking the tensor product of Loth sides of Equation 5.51 with Q and solving for A~,
1 1 .
Any —“"(" :z+1 " —R.). (5.52)

2u(1+4)

It follows from Equation 5.52 that the plastic strain increment is proportional to the
magnitude of the excursion of the elastic trial stress past the yield surface (see Figure 5.6).

Rl|+1 °n+1

Figure 5.5. Geometric Interpretation of the Incremental Form of the Consistency
Condition for Combined Hardening.
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Figure 5.6. Geometric Interpretation of the Radial Return Correction.

Using the result of Equation 5.52 in Equations 5.47 through 5.49 completes the
algorithm. In addition,
AdP = A7Q

and

Ad” = \/gA'y .

Using Equation 5.52 in Equation 5.47 shows that the final stress is calculated by
returning the elastic trial stress radially to the yield surface at the end of the time step
(hence the name Radial Return Method). Estimates of the accuracy of this method
and other methods for similarly integrating the rate equations are available in Krieg and
Krieg [28] and Schreyer, et al. [29). Note that the radial return correction (the last term
in Equation 5.47) is purely deviatoric.

5.1.6 Secant Modulus

A secant modulus is needed to make the conjugate gradient solution algorithm more
efficient. To derive the secant modulus, Equation 5.21 is written as

ou,, =0, + C:dAt




for calcula.tnng the trial stress state w:th the elastic modulus C. Next, Equation 5.47 is
written as

Oun1 =04y —abyy,y (5.56)

where

R,
= b — - - et
¢ ! tr | ptr (5.57)
n+1 * Sn+1

(5.58)

By using the operator D defined by
[ +2/3 —-1/3 -1/3

-1/3 +2/3 —1/3
~1/3 -1/3 +2/3

o=~ 00
(== = R I e B ]
OO0 OO @

D= 0 0 0 , (5.59)
0 0 0
0 0 0 ]
Equation 5.55 can be rewitten as
w1 =€+ D:C:dAL (5.60)

Now Equations 5.55, 5.56, and 5.60 are combined to eliminate all trial values and obtain
Ony1 — 0y, =(I—aD):C:dAt—aé, . (5.61)

With the use of Equation 5.60, the expression (£, : f,'_,_,)-l/ ?in Equation 5.57 is ap-
proximated with a two-term expansion as

- :C: dAt
( :zr+1 : n+1) VP o "_'1"""‘— (1 - L"“"') (5-62)

V £n+1 £n+l fn+l £n+l

Substituting Equation 5.62 into Equation 5.61 results in

bR1&€n+] ® £n+l ) Rn .
d,,;—d,;:(l—aD——‘ :C:dAt-b |1 - ———=1] ¢, (5.63)
* 2(€"+1 '€"+l) /2 V tn+l £n+l
Seeking a secant modulus C* such that

Onyr — 0y, = C* : dAL . (5.64)

we drop the last term in Equation 5.63 and approximate C* by replacing §,,,, with €}, ,:

(5.65)

bR.Ey1 ® € )
C'g(l—an —=aileil ) .C .
| 2|I€,.+1 I




5.2 Elastic Truss Material

The incremental stress in an elastic truss is computed by multiplying the strain
increment e; (Equation 4.44) by Young’s modulus. The new stress, then, is given by

Ong1 = Oy + EC( . (5.66)
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6. Contact Surfaces

Many structures consist of two or more parts that are in contact and slide with
respect to one another. In the setting of the CG method, a sliding algorithm can easily
be incorporated using the master-slave concept. When interference between two surfaces
is detected, the nodes on the slave surface are constrained to move on the master surface.
Friction can be used to constrain differential motion of the two surfaces in the direction
tangent to the master surface. The method is also conveniently used to fix two surfaces
together. The master-slave concept is also discussed by Stone et. al. [30].

As mentioned above, the master-slave algorithm will keep nodes on the slave surface
from penetrating the master surface. Thus, if a slave node moves past the end of a master
surface, the desired constraint may not be present. This problem can usually be fixed by
reversing the master and slave surface designations. Also, in order to obtain the highest
degree of constraint, it is best to have the more coarsely-meshed surface be the master
surface.

6.1 Search Algorithm

The relationship between a slave node and its master surface is shown in Figure 6.1.

('1v'1)

Figure 6.1. Master-Slave Relationships for Sliding Interfaces.
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The slave node S has penetrated the master surface element face and is located at
a perpendicular distance d from the master surface. A local coordinate system using
isoparametric coordinates ¢ and 9 is used to describe the master surface by

z = f(¢n) (6.1)

In order to find the location point M on the master surface, ((m, 7ar) must be found such
that the vector d is perpendicular to N, and N,,. To proceed, the functions ®; and P,
are defined as follows (“-” represents the dot product of two vectors):

® = d-N; (6.2)

o, = d-N, . (6.3)
The quantities d, N¢, and N, are

d = f-zus (6.4)

Ne = %C[ (6.5)

N, o= G (66)

where zg is the location of the slave node. Approaching the desired point ({p,nam) will
drive ®, and ®, to zero.

Following Benson [31], the calculation of the location of the slave node on the master
surface is begun with three iterations of a least-squares projection used to generate a
starting guess.

(=0 70=0 (6.7)
[ o[ 5] =[] 6
G = G-1+ AL (6.9)
M = M1+ 47 (6.10)

Then a Newton-Raphson procedure is used with the following equations to solve for {u
and n.

EE
¢ ¢ A (1)
5% & |[a]=-[5] (611
l o o

G = C-1+AC (6.12)

T = M1+ A4An (6.13)




After the first global CG iteration, the procedure is accelerated by storing (Cy,na)
for use as an initial guess for the next CG iteration. Convergence is assumed if A and
Ay are less than 1 x 1075,

To aid in searching for the element face that has the greatest possibility of being the
surface which is penetrated by the slave node, a data base for each master face is used.
For each master element face, a list of neighboring master surface faces is stored in an
array. If the result of the calculation for the slave node location results in an absolute
value of (u or nu greater than 1.0001, then the neighbor in the direction indicated by
the signs of (» and nas is used in the next search calculation. An example is shown in
Figure 6.2, where the neighboring face array IFACE for master face 1 is (2,3,0,0).

If d is less than a user-specified fraction (stolr) of the master-face length, the normal
component of the slave residual force Rg, is less than the user-specified tensile capacity
(ftolr) of the interface, and

~1.0001 < (g, mar < 1.0001 , (6.14)

it is deemed that the slave node has penetrated the master face.

X

IFACE() = 2300

Figure 6.2. Example of the Neighboring Face Array.




6.2 Kinematic and Force Conditions

The kinematic and force conditions that apply to a contact surface are very similar
to those in a finite-element assembly process. The conditions are applied to both the
residual force vector R; and the conjugate gradient vector P;.

6.2.1 Force Conditions

Fixed Interface

For a fixed interface, all the components of the slave node residual force vector are
applied as point loads to the master face at the location ({a,7s). The result is a set of
forces that are distributed to the nodes associated with the master face by

Rumia = dalRsi (6.15)

where the ¢, are interpolation functions of the master face. Then all the residual force
components at the slave node are set to zero. This action ensures that the total force
remains constant for the problem, and that the norms associated with the CG method
are correctly calculated. If the slave node is directly in contact with a master node,
this process is exactly the same as a finite-element assembly process. In addition, all
slave nodes in contact with a master surface are subjected to linear constraint conditions
defined by their location on the master surface.

Sliding Interface

For a sliding interface, simple Coulomb friction conditions have been implemented
in the code. The same actions are applied as in the case of a fixed interface with respect
to the force transfer from the slave node to the master surface. However, the maximum
amount of force transferred in the direction tangent to the master surface is limited to
the value of the friction coefficient times the normal slave force. The tangent direction
is calculated by projecting the velocity of the slave node onto the master surface.

6.2.2 Kinematic Conditions

To ensure that the slave node moves properly on the master surface, kinematic
conditions are applied to the solution process by modification of the slave node CG
vector Ps before the line search is undertaken. Because updates to the velocity vector of
the slave node are linearly dependent upon Ps, any modification to Ps will be reflected
in the velocity vector update after the CG line search is performed.

First, the P-vectors at the four master-surface nodes are interpolated to the location
of the slave node to define Py, the motion of the master surface. Py is then rotated to
the (n,(,n) coordinate system. A P for the slave node is then counstructed as follows.
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For the normal component,

A 0.2d
P, = Py, — — , (6.16)

2
where Py, is the component of Py in the surface normal direction. The subtraction
of 0.2d/«a; will result in slowly pushing the slave node back to the master surface every
CG iteration. In practice, a factor of one is used in place of «; for the following reasons.
First, «; is not known until after the line search is performed. Second, a; is usually ends
up close to one due to the choice of the CG preconditioning matrix M. Third, the factor
0.2 is somewhat arbitrary anyway.

If a fixed interface is specified, then the transverse components of P are

Pe = P
P, = Puy (6.17)

where Py and Py, are components of Py in the (- and 5-directions, respectively. Oth-
erwise, for a sliding interface, the slave node retains its original transverse components:

Po = Ps
Pn = PSn (618)

After P is constructed, it is rotated back to the global coordinate system and substituted
for the original slave node CG vector.

6.3 Diagonal Assembly

For all of the sliding conditions, the preconditioning matrix (which is simply the
diagonal of the linear stiffness matrix) must be assembled correctly to account for the
fact that two surfaces are in contact. The diagonal term associated with the slave node
is distributed to the master-face nodes using the interpolation functions ¢,:

Myo = $aMs (6.19)

The distributed slave values are then added to the diagonal values for the master nodes.
Again, as with the residual force assembly, this action ensures that the generalized CG
vector Z; is properly calculated.







7. Loads and Boundary Conditions

JAC3D supports several types of loads and boundary conditions. Displacements,
pressures, concentrated forces, and body forces may be prescribed. This chapter describes
how these are implemented in the program.

7.1 Kinematic Boundary Conditions

The kinematic boundary conditions described below are all accomplished by altering
the residual vector during the CG iterative process at the nodal points. All of the
kinematic boundary conditions are applied to nodal point sets.

7.1.1 Zero-Displacement Constraints

A zero-displacement constraint is accomplished by setting the appropriate compo-
nent of residual force at each selected node to zero during the CG iterative process. This
will kinematically constrain the problem because the update to the velocity vector us-
ing Equations 3.11 and 3.13 is linearly dependent upon R;. The starting value for the
appropriate displacement component must also be initialized to zero. Zero-displacement
constraints may be specified in any of the coordinate directions, or normal to any plane
parallel to the z-axis.

7.1.2 Nonzero-Displacement Constraints

A nonzero-displacement constraint is specified by initializing the component of ve-
locity with the change in displacement needed to satisfy the specification. The starting
value for the appropriate displacement component must also be initialized to the value
specified for the end of the time step. Then setting to zero the same component of the
residual force vector to zero for all conjugate gradient iterations will ensure that the ini-
tial values will not change with each conjugate gradient iteration. This action will result

in @/*' = 4. Nonzero-displacement constraints may be specified in any of the coordinate
directions.

7.1.3 General Skewed-Displacement Constraints

Displacement constraints in an arbitrary direction are not explicitly programmed
in JAC3D. However, this type of constraint is easily imposed with the use of a sliding
interface. First, elements are defined that describe the surface on which the body will
slide. The surface nodes of these elements are then given zero- or nonzero-displacement
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constraints to reflect the desired rigid body motion required of the surface. The master
element block must be given material properties, even though it will behave as a rigid
body. The surface of the body to be constrained is defined as the slave side of a sliding
interface, while the rigid surface is defined to be its master side as described in Chapter 6.

7.2 Traction Boundary Conditions and Distributed Loads

The boundary conditions described here apply external forces to selected nodes. The
pressure boundary condition deals with element side sets, while the nodal force boundary
condition applies to nodal point sets. Element side sets and nodal point sets are discussed
in the EXODUS manual [19]. Body forces (distributed loads) are applied to each node
in proportion to the mass of the material that surrounds it.

7.2.1 Pressure

The set of consistent nodal point forces arising from pressures distributed over an
element side are defined by the last integral in Equation 3.6 by

S fir = Sty /S d1(—pn;) dA (7.1)

where the range of the lowercase subscripts (coordinate directions) is 3, while the range
of uppercase subscripts (surface nodes) is 4. Since the virtual velocities are arbitrary,
they may be eliminated to yield

fu= —/sthn,-dA . (7.2)

The most general pressure distribution allowed is a mapping from nodal point pres-
sure values via the isoparametric shape functions. The resulting expression for the con-
sistent nodal forces is

fir=-p; / Prdn;dA . (7.3)
s
For the surface of the eight-node uniform stress element used in JAC3D, ¢ is given by
ér =151 + 36A s + Inhyr + &nT, (7.4)
where
1 -1 -1 1
gy={ ! A= A ={ ! R (7.5)
1 1 1 21 1 L] = 1 ot
1 -1 1 -1

and n;n; = 1. Figure 7.1 shows geometric definitions of a pressure loading.
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1t follows that Ny |
i = 2zidy , - (7.6)

a.nd»

ndA = cijk%‘%’"%dfd"

= ek zm’zuv(%Am +0Tm)(3Asn + €Tn) de dy . (1.7)

Then the consistent nodal forces can be written as

1 .1

L |y $195G R+ 0w hon + €Tn) ey . (18)
272

Ji = —preijezim 2in /

The above integral involves 64 terms. Only terms with even powers of both fand
are nonzero. Of the remaining 16 terms, 4 vanish due to the properties of the alternator.
The final 12 terms are given below.

1 1
o 2 2
‘ fit = =preipzim 2y (351 + LAy + InAg + €9Ty)
s I N s | :
’ 2 2

(3%, + $6Ms + Az + E9Ty)
(3Am +nTy) (R Aan + nln) dE dn

(1.9)

f

Figure 7.1. Definition of a Pressure Boundary Condition Along an Element Face




Integrating yields

fa = =& pseiieeim en[(E150 + 2ArA + $A2A + 30T Am Aan
+ (3%, A + 3AuTs + 300A0 + AT ) Aim Ty
+ (321A2s + 3AaTy + 3TiAw + §A0T ) TrAN] (7.10)

The above expression may be evaluated to yield the following formula for calculating
the nodal forces:

F: [2(2p1 + p2 + pa) + P3

Fal _at(p. _ _. . _ 2(2p2 + ps + p1) + pa
Fol = El(zis — Tj1)(Zre — 2a2) + (Tj2 — 2ja) (ks — Tia))] %2ps + pa + p2) + ;1

F; | 2(2ps + 1 +p3) + 2

[ ~(2p1 + pa) |

2p, +
+ FHl(zi2 — zj1)(2rs — Tra) + (i3 — Tja) (T — Tha)] 222; + Z:g

| —(2p4 + ;1) |

[ —(2p1 + p32) ]

+ Ll(zh — zja)(2ks — 2a2) + (253 — Tj2) (Tra — T )] _8;:; I 23 (7.11)

L (21)4 + P3) i

where the indices {7, j,k} form a negative permutation. Note that a positive pressure
gives forces directed inward.

The nodal values for the pressure are calculated using the user-supplied scale factor
and time history function. The values are recalculated every CG iteration.

7.2.2 Nodal Forces

Nodal point external forces are simply applied by calculating the magnitude of the
force determined by the user-supplied scale factor and a time history function. The time
history function is evaluated at the beginning of the time step.

7.2.3 Gravity or Body Forces

Gravity or body forces are computed with the evaluation of the second integral in
Equation 3.6. This is done as follows:

/ pb,'&'l,' dV = pb,-lvets”&'t,',] . ' (7.12)
Ve
where V, is the element volume and 6;; is the Kroneker delta.
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Body forces are input by the use of a specified time history function for each com-
ponent. For example, a gravity load or body force in the z-direction would only use the
Z GRAVITY FUNCTION option. General body forces that vary with position and time
may be input from a file using the DISTRIBUTED LOADS option.
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8. Verification and Sample Problems

Sample problems are included for code verification and to acquaint the user with
the use of the JAC3D program. The first section gives problems intended to verify the
general coding of JAC3D. The second section presents verification studies specific to the
isothermal elastic/plastic material model.

8.1 Elastic Problems for Verification of Continuum and Truss
Elements

Several elastic verification problems are presented. These include the large-displace-
ment analysis of a thin beam with and without truss elements, the rotation of a unit
cube, and the pressurization of the internal surface of a sphere.

8.1.1 Cantilever Beam

The large deformation of an elastic cantilever beam is included for comparison with
the analytical solution as formulated by Holden {32]. The beam problem is challenging
for the CG method, which has a great deal of difficulty finding a solution. The beamn has
a length-to-thickness ratio of 30 and, to simulate plane stress conditions, Poisson’s ratio
is set equal to zero. Gravity and normal pressure loading conditions are presented.

First, the beam is loaded with gravity, which keeps the direction of load constant
throughout the analysis. Following the notation and development of Holden, the equation
for the slope of the beam is

d*0
where 0 is the angle between the beam neutral axis and the z-axis, 5 = s/L is the
normalized arc length along the beam neutral axis, & = wL?/EI is a nondimensional
loading parameter, L is the length of the beam, w is the loading intensity (load per unit
length), E is Young’s modulus, and I is the beam’s moment of inertia. This equation
describes the finite deflection of uniform beams using the Euler-Bernouili law of bending
subject to vertical (gravity) loading. Boundary conditions for a cantilever beam are

= —kScosf (8.1)

%0_- =0 at 3=0 (free end) (8.2)
3
6=0 at 3=1 (fixed end) (8.3)

The normalized horizontal and vertical deflections of the free end of the beam are then
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given by .
h/L = / cos 0 ds (8.4)
0

and

1
§/L = / sin0ds (8.5)
[1]

respectively. Equation 8.1 was solved using a Runge-Kutta procedure, the integrations
for deflections were computed using adaptive quadrature, and the results checked by
comparison to Holden’s published solution.

The finite element model, shown in Figure 8.1, has thirty elements along its length,
four through the bending direction, and one transverse to the bending. The nonlinear
response was calculated for the gravity-loaded case and is compared to the beam-theory
solution in Figure 8§.2. The comparison for this case is very good, although because
of numerical difficulty the JAC3D solution terminated at & = 17. In Figure 8.1 the
deformed shape of the mesh for loads corresponding to £ = 8.5 and k£ = 17 is shown in
comparison to the undeformed mesh.

Convergence of the solution for the beam problem is very slow. First, the spread of
eigenvalues in the problem is large, and any indirect interative solution technique with a
diagional conditioning matix will have difficulty. If the problem is ill-conditioned in the
linear approximation, as in this case, then adding the nonlinearity of large deformation
(i.e., taking into account the rotation of the beam) compounds the difficulty. To lower
the impact of the nonlinearities, the calculation is begun by first solving the initial load
step assuming linear geometry. Then, using the linear results as a starting vector, the
geometric-nonlinear effects are included and the firat step is recalculated (TRIAL LINEAR).
The starting displacement increment for each of the following time steps is taken to be the
incremental displacement calculated in the previous step (TRIAL VELOCITY FUNCTION).
For the gravity-loaded case, the load steps took an average of 580 nonlinear interations
each. Load increments of £ = 0.0648 were used, with a convergence tolerance of 0.03
on the residual force norm of Equation 3.16. To get the correct bending response, the

default value of the HOURGLASS PARAMETER must be used.

The problem was also analyzed with pressure applied along the top of the heam, so
that the load remained normal to the surface throughout the deformation. The beain-
theory equation for this case is

d*9 -

i -ks, (8.6)
with the same boundary conditions as before. For large load magnitudes, this configu-
ration causes more severe bending of the beam. The input file for the pressure-loaded
case is shown in Figure 8.3. Once again, the analytic solution is compared to the JAC3D
calculation in Figure 8.4, and the deformed shape of the heam at several load levels
is shown in Figure 8.5. In this case, the finite element model is somewhat stiffer than

Fuler-Bernoulli beam theory predicts, particularly at the higher loads. This is probably
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Figure 8.1.

Finite Element Model for Beam Problem.
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k (=wL'IEl)
Figure 8.2. Comparison of Displacements for-a Beam with Gravity Loading.
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TITLE
ELASTIC BEAM WITH PRESSURE LOADING

TRIAL LINEAR
MAXIMUM ITERATIONS, 3000
ITERATION PRINT, 10

RESIDUAL TOLERANCE, 0.03
MAXIMUM TOLERANCE, 0.06
CGRESET LIMITS, 790, 80
TRIAL VELOCITY FUNCTION, 2
SOLUTION FUNCTION, 3
FUNCTION 1 $ PRESSURE LOADING
0.0, 0.0
2.0, 2.0
END
FUNCTION 2 $ TRIAL VELOCITY
0.0, 1.0
2.0, 1.0
END
FUNCTION 3 $ SOLUTION
0.0, 310
1.55
END
PRESSURE, 5, 1, 400.
X DISPLACEMENT,
Y DISPLACEMENT,
Z DISPLACEMENT,
Z DISPLACEMENT,
Z DISPLACEMENT,
MATERIAL, 1
ISOTHERMAL ELASTIC PLASTIC
YOUNGS MODULUS, 1E+7
END
EXIT

[we

W e

Figure 8.3. Input for the Pressure-Loaded Beam Problem.
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Figure 8.4. End Displacement for a Beam with Uniform Pressure Loading.

Figure 8.5. Deformed Shape of the Beam under Pressure Loading.
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due to the fact that when the beam starts bending back on itself, the radius of curva-
ture is no longer large compared to the thickness of the beam. JAC3D had a somewhat
easier time with this load configuration: it ran all the way to completion at k = 20 and
took an average of 365 nonlinear iterations per load step. As a point of reference, the
JAC3D solution with linear geometry assumptions (LINEAR PROBLEM) is also plotted
in Figure 8.4. This solution agrees with the linear beam theory prediction of §/L = k/8.

Truss elements were added along the top and bottom row of elements to increase the
bending stiffness by a factor of two. The addition of truss elements produced the same
results as stiffening the material by a factor of two, thus verifying the coding for the truss
elements. To further verify the coding of the truss and continuum elements, the beam
was rotated to an arbitrary position in 3-space and the pressure-loading calculation was
repeated. The results were insensitive to the change in orientation.

8.1.2 Unit Cube

A unit cube as shown in Figure 8.6 is first loaded with uniaxial pressure and then
rotated about one corner. The input to the unit cube problem is shown in Figure 8.7. The
INITIAL EQUILIBRIUM capability is exercised to obtain the uniaxial stress state before
rotation begins. CGRESET LIMITS are chosen so as to help the single-element problem
converge on initial loading. A rotation of 90° is then accomplished in 10 steps. The stress

AR pressure
ST

/
/
/
/
~ /

~
~ / .
~ rotation
~

Figure 8.8. Description of Unit Cube Rotation Problem.
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TITLE

ONE ELEMENT ROTATION TEST
HOURGLASS PARAMETER 2
INITIAL EQUILIBRIUM
CGRESET LIMITS 0, 12,
SOLUTION FUNCTION 1
OUTPUT FUNCTION 1
FUNCTION 1

0 10

4.0
END
RESTIDUAL TOLERANCE = .00001
MAXTMUM ITERATIONS = 100
ITERATION PRINT = 1
MATERIAL,1,1
YOUNGS MODULUS
END
PRESSURE 5,4,1
X DISPLACEMENT
Y DISPLACEMENT
X DISPLACEMENT
Y DISPLACEMENT
Z DISPLACEMENT
% DISPLACEMENT
FUNCTION, 4

0 10000

4 10000

10

1.0BE6

END
FUNCTION, 2

0.0000000, 0.0000000

0.4000000,
0.8000000,
1.2000000,
1.6000000,
2.0000000,
2.4000000,
2.8000000,
3.6000000,
4.0000000,

END
FUNCTION, 3

0.0000000,
0.4000000,
0.8000000,
1.2000000,
1.6000000,
2.0000000,
2.4000000,
2.8000000,
3.2000000,
3.6000000,
4.0000000,

0.0123117
0.0489436
0.1089938
0.1909835
0.2928941
0.4122159
0.5460110
0.8435554
0.9999833

0.0000000
0.1564346
0.3090174
0.4539911
0.5877860
0.7071076
0.8090178
0.8910072
0.9510553
0.9876868
1.0000000

END
BEXIT

Figure 8.7. Input for Unit Cube Rotation Problem.
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Figure 8.8. Stress Results for Unit Cube Rotation Problem.

state as a function of rotation is shown in Figure 8.8. The rotation a.lgoriﬂlm is very
accurate. In fact, for this problem it is essentially exact.

8.1.3 Internally-Pressurized Sphere

A spherical geometry was chosen to demonstrate the performance of the nonlinear
CG method and to verify the coding of JAC3D. With a spherical geometry, relatively
simple loading conditions can be used to exercise a significant portion of the code. For
example, all the components of displacement, stress, strain, and material state variables
are used. The sphere is layered so that multiple material models can be utilized. Inter-
face conditions are applied to verify the contact surface algorithm for fixed interfaces.
Loading and response is one-dimensional (radial), so that a small sector of the sphere
may be analyzed to obtain a high-resolution solution. The model can then exercise
skew-displacement boundary conditions and the sliding interface algorithm.

An outside-to-inside radius ratio of two was chosen for the analyses. Two different
finite element meshes were used, which will be referred to as the “octant” and “sector”
models, respectively. The models, which both use 40 elements though the thickness, are
shown in Figures 8.9 and 8.10. The octant model has four material layers joined by
fixed interfaces, and symmetry boundary conditions are applied on the three orthogonal
coordinate planes. The mesh has 1,840 elements and 2,596 nodes. The sector model

(s
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Figure 8.9. Octant Finite Element Model for Sphere Problem.

Figure 8.10. Sector Finite Element Model for Sphere Problem.

(L]




covers a 5° sector of the sphere with a single material block. The first two sides are aligned
with coordinate planes and have displacement constrained in the y- and z-directions,
respectively. A third side has normal displacement constrained by use of the XYPLANE
DISPLACEMENT option. The fourth side is constrained to slide along a rigid surface
placed above the sector. The sector mesh has 168 elements and 396 nodes.

There is a simple analytic solution to this problem. The elastic solution given by
Mendelson (33, Equation 8.3.11] is

1 b
u= [(l —2u)r + ( :;rl:) ] E(b"/z"-— 0y (8.7)

where E and u are the elastic constants, r is the radial position, @ and b are inside
and outside radii, respectively, and p is the applied internal pressure. To obtain a
geometrically-nonlinear solution, this equation was applied iteratively, with the radial
positions updated each iteration to reflect the displacements calculated in the previous
iteration.

The radial displacement calculated by JAC3D is compared to the analytic solution
in Figure 8.11. Using a Young’s modulus of 1.0 x 10" and a Poisson’s ratio of 0.3 with an
applied pressure of 10,000 resulted in an internal deformation of 0.040034 using the sector
model, which compares {avorably to the analytical solution of 0.040049. JAC3D required

.040 T T T 7 | T T 1 T T T T T l T T T T T T i T

035 + ©  Analytic Solution
~— JAC3D Sector Mode!

= r - — - JAC3D Octant Mode! -
[} - 4
£ .030 - -
[ .
o i el
ie] L i
[} :
2] " 7
a L .
.8 .025
g :
24 3 .
.020 +~ =

L 6\\\* )

O 15 g i 1 i | f 1 i i I | ) i : 1 ! i 1 1 L H e ,\‘\;

50 60 70 80 90 100

Radius
Figure 8.11. Radial Displacement for the Pressurized Linear Elastic Sphere Problein.
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‘input commmds for this problem a.re shown in Flgure 8. ll
octa.nt model JAC3D required 305 iter (26 CPU aeconda), and
internal radial displacement of 0’040088 Thi
Flgure 8 11, and is : rom

TITLE
ELASTIC SPHERE umx PRESSURE LOADING
ITERATION PRINT = 10
MAXIMUM ITERATIONS = soo
RESIDUAL TOLERANCE = .001
SOLUTION FUNCTION = 1
OUTPUT FUNCTION = 1
FUNCTION = 1 $ SOLUTION
0.0,1
1.0
FUNCTION = 2§ PRESSURE LOADING
0.0,0.0
1.0,10000.0
END ,
PRESSURE = 1 2, 1
X DISPLACEMENT =
Y DISPLACEMENT =
=

0
b S |
1 $ Rigid surface for sliding interface
Z DISPLACEMENT = 1 $
Y DISPLACEHENT 2
Z DISPLACEMENT = 3
XYPLANE DISPLACEHENT = 4, 95.0
SLIDING SURFACE = 11,10, 0.0, 1.E-4
MATERIAL {1
'ISOTHERHAL ELASIIC PLASTIC
YDU'GS HODULUS =.1.0E7
POISSONS RATIO = 0.3
EXIT

Figure 8:13. Input for Sector Model, Pressurized Sphere Problem.




8.2 Isothermal Elastic/Plastic Verification Problems
8.2.1 Rotating Ring

The rotating ring problem, shown in Figure 8.13, is included to verify the large-
rotation capability for elastic/plastic material reponse. The ring is given a slow in-plane
rotation and internally pressurized beyond the yield stress of the material. It is positioned
in the zy-plane with its center at the origin. The initial inside and outside radii are 0.95
and 1.05, respectively. The out-of-plane thickness is 0.1, and plane strain conditions are
imposed by restricting displacements to the zy-plane. The ring material has a Young’s
modulus of 10.3 x 10%, a Poisson’s ratio of %, a yield stress of 4.15 x 10*, a hardening
modulus of 5.17 x 10%, and a hardening parameter 8 of 1.0. During the pressure loading
sequence the ring was rotated by applying opposing horizontal displacements to a pair
of nodal points on the top and bottom of the ring, respectively, and opposing vertical
displacements to nodes on the left and right sides, respectively. Figure 8.13 shows the
ring before and after loading, with Element 1 shaded in both cases for reference. The
input for the ring problem is shown in Figure 8.14.

Figure 8.13. Geometry for the Rotating Ring Problem.




PANDING AND ROTATING RING
MAXIMUM ITERATIONS 1000
~ ITERATION PRINT 10
GENESIS OUTPUT
MATERIAL 1, 1
 'YOUNGS MODULUS  10.3+6
 POISSONS RATIO 0.333333333
"YIELD STRESS 4.15+4
HARDENING MODULUS = 5.17+5
HARDENING PARAMETER 1.0
END
SOLUTION FUNCTION 5
OUTPUT FUNCTION 4
TRIAL VELOCITY FUNCTION 3
, $ LOADING

$ DISPLACEMENT ROTATION FUNCTION

$ TRIAL DISPLACEMENT

X DISPLACEMENT

Y DISPLACEMENT

X DISPLACEMENT

Y DISPLACEMENT

Z DISPLACMENT 5

Z DISPLACMENT 6
PRESSURE 101 1.0
RESIDUAL TOLERANCE 0.005
EXIT

Figure 8.14. Input for the Rotating Ring Problem.
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Figure 8.15. Effective Stress Response of the Rotating Ring.

The effective stress as a function of time is depicted in Figure 8.15. Note that the
abrupt changes in slope of the curve reflect the change in the applied pressure rate. The
total rotation is approxxma.tely 45° ‘and all the elements exhibit identical response to
within 0.2 percent. The effective stress calculated is the same as it would have been
had the ring not been rotated.

8.2.2 Hollow Sphere

Elastic/plastic analyses of the hollow sphere discussed in Section 8.1.3 were per-
formed to verify the isothermal elastic/plastic material model. A yield stress of o, =
10,000 was used for all the analyses.

The first problem considers the material to be perfectly plasticc. When enough
pressure is applied, yielding begins on the inside surface. As the pressure is increased
further, the plastic zone expands radlally until the entire sphere has yielded. The radius
c of the elastic/plastic interface is related to the applned pressure p by the following
equation given by Mendelson [33, Equation 8.3.5): :

2( 1\
P=2lnp +3 (1 - 53-) | (8.8)
Here the dimensionless variables are P = p/o,, p. = cfa, and B, = bfc. Once the
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interface radius is computed, the dimensionless effective stress S = |op — a,{/0, in the
outer elastic region reduces to simply ¢®/r3. By definition the dimensionless effective
stress is unity in the plastic region.

For the finite element solution to this problem, internal pressure was applied first
to the octant model and the material was considered to be perfectly plastic. Sufficient
pressure was applied on the first load step to initiate yielding on the inside surface (letting
¢ = a in Equation 8.8). The pressure was then increased in 20 equal load steps to the
point that the entire sphere should have yielded (¢ = b). The effective stress along a
radial line from an element on the inside surface to an element on the outside surface
for load steps 1, 6, 11, 16, and 21 are shown in Figure 8.16, where it is compared to the
analytic solution. A convergence tolerance of 0.001 was specified in JAC3D. Note that for
a perfectly plastic material, there is no equilibrium solution when internal pressure causes
the entire sphere to yield. (The balloon pops!) Thus, on the last load step JAC3D did
not converge to the specified equilibrium tolerance, although the stresses resulting from
the non-equilibrium final state indicate that the sphere had indeed completely yielded.
The first twenty load steps required a total of 4,118 iterations for the octant model.

The analysis was repeated using the sector model, shown with x’s in Figure 8.16.
This idealization produced slightly higher effective stresses, particularly at the later lnad

1.1 T I T I T l T 1 T T T

‘*Q—Hf‘—.—l‘*"-’—""—}‘—.—l*—.‘.‘.—.—' &8

JAC3D Sector
JAC3D Octant

0 N } ) { i i Y | o4
1.0 1.1 1.2 1.3 1.4 15 1.6

p(r/a)

Figure 8.16. Effective Stress Distribution for the Pressurized
Elastic/Perfectly-Plastic Sphere Problem.




steps. It took 2,444 iterations to solve the first twenty load steps using the sector model.
Both JAC3D analyses predicted higher stresses than the analytic solution, more notice-
able at the higher pressures. This is probably due to the fact that the analytic solution
assumes linear geometry, whereas the JAC3D analyses were geometrically nonlinear.

The next problem includes linear strain hardening in the material plasticity. The
radius of the elastic/plastic interface for this case is computed from [33, Equation 8.6.20]

_ -:;m(l —u)(1—=1/*p2+2(1 —m)Inp. + %(1 —m)(1-1/82) (8.9)

P 1—m+2m(l - p)

where m is the ratio of the hardening modulus to Young’s modulus, g is Poisson’s ratio,
and f = bfa. Note that for m = 0, this reduces to the perfectly-plastic case. The
effective stress in the elastic region is the same as before, whereas in the plastic region
[33, Equation 8.6.22]!

_1—m+2m(1 — p)c*/r?
S = l-m+2m(l —p) (8:10)

This problem was analyzed using the octant model with a strain-hardening modulus
of 1.0 x 10° (m = 0.1). Because of the strain-hardening, a higher final pressure was
required to yield the entire sphere. Moreover, because the material continues to harden
with increasing strain, the last load step was stable and converged easily. The results
are shown in Figure 8.17. For the later load steps the finite element solution predicts
slightly higher stresses than the analytic solution. Once again this is likely due to the
geometrical nonlinearity accounted for in the JAC3D solution. For comparison, the first
twenty load steps in this problem required a total of 3,914 iterations.

To verify the use of thermal loads in the JAC3D program, the sphere was analyzed
using a sequence of steady-state thermal loads obtained by raising the temperature of the
inside surface while the outside surface temperature was held at zero. The analytic solu-
tion for this problem is taken from Section 5.4 of Reference [34], with notation changed
slightly for compatibility with the foregoing discussion. Denoting the inside surface tem-
perature by Ty and the coefficient of thermal expansion by «, a dimensionless thermal
load is defined as

EaTo

oy(1 —p)
Yielding begins at the inner surface due to hoop compression and expands outward. The
radius c of the initial elastic/plastic interface is found by solving

_ofe <\ [1=2/0+In(?/a®) )
r=2(;-7) [ @+ /o)1 = by (8.12)

Letting o = 0.00001 and using the previous elastic/perfectly-plastic material properties
and geometry, initial yield at ¢ = a occurs at Tp = 98.0°. Since there is no strain

T (8.11)

i

The expression for Sy in the referenced equation is missing the term + j—— Sl e
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Figure 8.17. Effective Stress Distribution for the Pressurized Elastic/Plastic
Strain-Hardening Sphere Problem.

hardening, the dimensionless effective stress .$ in the plastic region remains at unity. In
the elastic region, S is given by

\ 36 ab )
.5 = ,Bér—a—f-ér(Ta—) (813)
where
3 —
B 2% [ 1 —¢/b+In(c/a) J (8.14)

(2 + ¢/b)(1 — ¢/b)?

When the plastic boundary has advanced to a radius ¢;, a second plastic zone is
initiated at the outer surface due to hoop tension. The radius ¢, is found by solving

(5] i 20 1 2 =
=t = = ( b) (8.15)

For the present problem, ¢; /a has a value of 1.197 and occurs at an inner surface temper-
ature (from Equation 8.12) of 264.8°. Above this temperature, the second plastic zone
spreads inward from the outer surface while the inner plastic zone continues to spread
outward. When there are two separate plastic zones, Equation 8.12 no longer holds,

5!




Instead we must simultaneously solve for both elastic/plastic boundaries, using

r o= 2(5—%{) (1+1°i/g;d) (8.16)
In (g—;) = ;i—;(g-—l)2 (8.17)

where d is the radius to the boundary of the outer plastic region. The stresses in the
elastic region are obtained from Equation 8.13 with

B= 2%’ [?(Tdi/i/—d)] (8.18)

For the JAC3D calculation, the initial load step corresponded to T = 98°. Solutions
were then calculated using the octant model for 20 equal steps in which T, was progres-
sively increased to 600°. The resulting effective stress vs. radial position at load steps 1,
6, 11, 16, and 21 is shown in Figure 8.18, compared to the analytic solutions. As with
the previous two solutions, the agreement is very satisfactory. To reach a convergence
tolerance of 0.001 required 2,737 total iterations.

L L e S, S

1.0 —e—o—o—e-e—o—g—o-e—ero—g--. o - e

N T T R T . 2 R y
p(r/a)
Figure 8.18. Effective Stress Distribution for the Thermally-Loaded
Elastic/Perfectly-Plastic Sphere Problem.
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JACaDV v6r _Input Instructmns

Two mput files are needed by the JAC3D progra.m. Nodal pomt element 1dent1ﬁca.tron, .
boundary condrtrons, ;md contact surface data are supplied by a mesh genera.tor in the
'GENESIS data format on: unit 9. The second input file, unit 5, contains control mforma—
tion mcludmg problem deﬁmtlon, output options, solution control, boundary conditions,
function data, and material p perties. To associate sets of nodes or element sides with
a bounda.ry oondmon, ﬂags are prescribed that correspond to the same flag for a set of
enther nodes or element sldes in the GENESIS unit 9 file.

For the uait 5 file, free ﬁeld mput is used and each input line is identified by several
descriptive words. The forma.t is the description followed by data. The order of the
input is not 1mporta,nt except that data for each function and material must be grouped
together. The first three letters of each word if it contains three letters must be spelled
correctly and all words must be present. The free field mput allows the user to delineate
entries by either a blank, a comma, or an equal ; sign. A dollar sign indicates that whatever
follows on the line of mput isa comment An asterisk indicates that the current input
line is to be contmued on the uext line. An EXIT record will terminate the input. The
followmg descrlbes each lme of data.

A.l Problem Deﬁmtmn
TITLE

Enter a sulta.ble title on the next line.

THERMAL PROBLEM source, nfunct.

The default is an isothermal problem. If source is blank, then nfunct is ignored
~and: tempera.tures must be supplied on unit 58 for a thermal problem. Temperature

records are of the form

READ(58) TIME, (TEMP(I), I=1, NUMNP)

where NUMNP is the total number of nodes. If source is set to INTERNAL, a spatially-
" uniform’ temperature field is genera.ted for each time step from the function nfunct,
~ and unit 58 is not read.

stnbuted body forces. Loads in force per unit mass
keyword is specified. Distributed load records




LINEAR PROBLEM ;
- The default isa geometrnca.lly nonlmea.r problem.

NONLINEAR PROBLEM
This is the default.

TRIAL LINEAR
Use of the trial linear option might help in a.ccelera.tmg solution convergence for
problems mvolvmg la.rge rotations. Two iteration passes will be attempted on the
first load step. The first pass uses linear geometry assumptions and the second pass
does a full nonlinear geometry solution using the linear solution as an initial guess.
The default is that no trial linear solution will be calculated for the solution of the
first load step.

INITIAL EQUILIBRIUM etime

This specifies that JAC calculate an lmtlal equilibrium state before the first load
step. Etime is a dummy time increment to be passed to any rate-dependent mate-
rial models. Two equilibrium passes are made prior to beginning the load history;
the displacements are zeroed out and the state variables reinitialized after each pass.
Two passes are used because of geometrical nonlinearities; a stress state in equilib-
rium in a deformed configuration may not still be in equilibrium when displacements
are rezeroed. The default is not to calculate initial equilibrium before taking the
first load step.

RESTART PROBLEM ;

If a this command is input, a restart of the problem at the first time specified by the
solution control function is executed. Restart data is expected on unit 32. All the
input necessary to set up the problem must be included, i.e., GENESIS data should
be on unit 9 and control information should be on unit 5. The restart file, unit 32,
only contains the necessary information to establish initial mechanics conditions for
the solution, and is written in the EXODUS file format. The default is not a restart
problem.

A.2 Output Options

GENESIS OUTPUT
This specifies that the GENESIS mesh information be echoed on the ASCII output
file, unit 6. GENESIS is the mesh portion of the EXODUS data format. The default
is'to not write detmled mes information on the printed output.

itoring of the iteration process during a




mtermedute mformatnon to be wntten. ,

OUTPUT FUNCTION nfum't
.~ Nfunct spectﬁes the function that will be used for determining when prmted solution
output will be written. The function value() at time(:) is the number of times the
output will be written between time(i) and time(i + 1). If this is not input, data for
all the nodes and elements will not be written. If output for a load step is not
selected only an iteration summary is written to the output file, unit 6.

PLOT FUNCTION nfunct
Nfunct specifies the function that will be used for determining solution plot output
“times in the EXODU’S format on unit 11. The function value(i) at time(¢) is the
number of times the output will be written between time() and time(i + 1). If this
is not input, data will be written for every time step.

WRITE RESTART FUNCTION nfunct
Nfunct specifies the function that will be used for determining the times when data
is written to unit 30 for later use in restarting the problem. The function value(i)
at time(z) is the number of times the output will be written between time(i) and
time(i + 1). If this command is not input, no restart data will be written.

A.3 Solution Control

SOLUTION FUNCTION nfunct
Nfunct specifies the function that will be used for determining solution time incre-
ments. The function value(i) at time(t) is the number of times the solution will be
calculated between time(:) and time(i + 1). Therefore,

time(i + 1) — time(z)
value(i)

Atime =

A SOLUTION FUNCTION command must be input.
DISPLACEMENT TOLERANCE tolu

This applies to the relative change in the norm of the incremental displacement
vector within the last iteration. The default convergence tolerance is 1.0 x 10712,

'RESIDUAL TOLERANCE folr
This applies to the norm of the residual force vector divided by the norm of the

a.pphed loads vector. The default convergence tolerance is 1.0 x 1072,




lon is used pmnanly in the absen

loads. ‘Reaedf defau 8 to zero.

MAXIMUM ITERATlONS nimaz
The default i is. the number of degrees of freedom.

if there are no significant a.pplied loads, convergence is assumed if the norm of the residual
force vector is less than residf Otherwise, if either the displacement or residual tolerance
is satisfied, the program assumes the load step has converged. If the convergence criteria
are not satisfied within nimax iterations, JAC will first go back to the iterate Tjiny if
any, that it was tracking for the smallest residual during the load step iterations (see N
the discussion under CGRESET LIMITS below). If the relative size of the corresponding '
residual 7;_,, is less than tolrmz, then z; ;. is accepted and JAC will proceed to the next -
load step. If not, x;_,, is written to the plot file and the analysis is terminated.

CGRESET LIMITS itsirt, itrset, tolfac

These parameters control logic that resets the conjugate gradient 1tera.t10n scheme.
When the CG iteration is not convergmg, JAC picks a new initial guess “on the fly,”
selecting as its new guess the vector Z;nin Which has produced the smallest residual
Tiwin 50 far in the current load step. The first parameter, itstrt, specifies how many
iterations to wait before looking for a- minimum residual, i.e., JAC requires that
Jmin > itstrt. The default value is NDOF/100. Itrset specifies the number of iterations
to allow between finding a minimum and restarting the CG algorithm. The default
value of itrset is NDOF/2. The third parameter, tolfac, defines how much growth in
the residual norm indicates divergenvce. Its default is 1000.

TRIAL VELOCITY FUNCTION nfunct

Nfunet specifies a function which will be used for deternnnmg a multiplier, which
when applied to the Jast incremental displacement field, will generate an initial guess
for this load step. The value(s) at time(i) will be used as the multiplier for all load
steps between time(:) and time(i + 1) (values are not interpolated). For problems
where the solution varies smoothly over many load steps, a trial velocity factor of 1.0
can significantly increase the rate of convergence. On the other hand, for problems
with several disjoint load steps or abrupt changes in loading direction, a trial velocity
can hinder convergence. The default is no trial velocity.

HOURGLASS PARAMETER value

Reduced-mtegra.hon elements siich as those in JAC are subject to hourglass (“zero-
energy” or spunous‘deforma.tlon”) modes. The current formulation uses Flanagan’s
orthogonal stlffness mulation tp control these modes. Value isa multlpher on the




‘ Cdnditions

X nfunct mvalue ‘
Y DISPLACEMENT zﬁag, nfunct, mvaluc‘
V4 DISPLACEMENT zﬂag, nfunct, moalue
X FORCE zﬂag, nfunct, mvalue
Y FORCE iflag, nfum‘t moalue
Z FORCE iflag, nﬁmct movalue
For dlspla.cement and force boundary conditions, the value of iflag must correspond
to a nodeset flag in the GENESIS data file. If nfunct is zero or blank, then a
zero condition is a.pphed otherwise the value of the function at the end of the load
step times mvalue the multiplier value, is applied. Linear interpolation is used to
determine the function value for all loading functions. (The default value of mvalue
is zero.)

XYPLANE DISPLACEMENT iflag, angle
This keyword specifies that there be no displacement normal to a plane perpendic-
ular to the ry-plane of the analysis, and is useful for modeling certain symmetry
conditions. [flag is a nodeset boundary flag number and angle is the orientation of
the constraint plane’s normal vector, measured counterclockwise from the z-axis in
degrees.

X GRAVITY FUNCTION nfunct

Y GRAVITY FUNCTION nfunct

Z GRAVITY FUNCTION nfunct
For gravity body forces, the total load is specified by using the value f(t) of the
specified function at the end of the load step along with the density, which is specified
in the materlal data. Load = density x volume x f (t), with volume calculated by
the JAC3D program.

PRESSURE iflag, nfunct, pvalue
For pressure boundary conditions, iflag must correspond to a sideset flag in the
GENESIS data base. The magnitude of the applied pressure is determined by mul-
tiplying the value of the function at the end of the load step by pvalue. The default
value of pvalue is zero.

USER PRESSURE iflag, pvalue

! . o This input record directs the code to call SUBROUTINE BNDUPR once each load step

i to get a pressure distribution. There is a dummy routine to serve as a template in

: $ACCESS/ACCESS/analys1s/J ac3d/bndupr.f which defines the calling arguments.
Iflag must correspond to a sideset flag in the GENESIS data base. Pvalue is passed
to the uservsubr‘outme in the PBC array.
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SLIDING SURFACE mflag, sflag, cocff, diolr, flolr, stolr
FIXED SURFACE mflag, sflag, dtolr

Contact surfaces are specified by associating the master surface flag mflag and the
slave surface flag sflag to corresponding sideset flags in the GENESIS data base.

Coeff'is the coefficient of friction. Its default is zero.

Dtolr is a displacement tolerance such that if the two surfaces are within the tol-
erance, they are assumed to be in contact (in other words, a capture distance).
Its units are relative to the length of the master element surface. The default is
1.0 x 1077,

Ftolr is the value of force that must be exceeded for a SLIDING SURFACE to be
allowed to separate once contact has been established. The default is 1.0 x 10%. A
FIXED SURFACE is never allowed to separate once contact is established.

Stolr specifies the penetration distance within which to capture a slave node, in units
of master-surface length. It defaults to 0.1.

A.5 Function Data

FUNCTION n
time(1), value(1)
time(2), value(2)

time(m), value(m)
END

Function data are input as pairs of data, with one pair per record. The data is terminated
by an END record. Care should be taken, because different input quantities make use of
function data differently. It is suggested that the functions be numbered consecutively
from one, since the function number n is used as an index into the function data array.

A.6 General Material Data

The following data may be input for all materials. The general material data must be
accompanied by parameters specific to the material models, which are outlined in the
following section. »

MATERIAL id, itype
The id should correspond to an element block ID in the GENESIS data file. Itype




[ ch load step (An mcrement in thermal strain
1 perature increment gives the coefficient of thermal

’DENSITY valuc L
The defa.ult 's zero.

BIRTH TIME value

The default is zeio. :

DEATH TIME value e '
The default is 1.0 10%, One set of birth aud death times applies to all the elements
in the problem w1th the same materla.l ID. A

INITIAL STRESS stgzzﬂ stgyy0, szgzzﬂ tau:ty0 tauyzﬂ tauz:cﬂ
STRESS GRADIENT gradzz, gradyy, gradzz, gradzy, gradyz, gradzz

_All'the elements of the ma.tena.l are 1mt1ahzed with the stress components computed
'by, for mstance e

: Uno = szgza,'o +zx gradza:

where z for each element is ca.lculated by averaging the 2-coordinates of all its nodes.
The STRESS GRADIENT input. rex:ord may be omitted if a constant initial stress is
: desnred The defa.ult ls to apply no nntla,l stress.

A. 7 Specxﬁc Matenal Dafca

One set: of the followmg da.ta. must be mcluded with a set of general material data for
~ each matena.l Enough data must be spec:ﬁed " define a real material. All values are
. defaulted to,zero. e e




POISSONS

YIELD STRESS mlue ; :
The‘ efa.ult of zero results in an elastic materlal

HARDENlNG‘ MODULUS value

BETA valuc L
Ranges from 0 0 to l 0 Zero means only kinematic hardening occurs, while 1.0
means ouly 1sotrop1c ha.rdenmg occurs.

END e
An END record terminates each set of material data.

Materiél"l')?pe 2: Temperature Dependent Elastic Plastic

The formulation of this model is described in SANDS1- 0998, “JAC—A Two-Dimensional
Finite Element Computer Program for the Non-Linear Quasistatic Response of Solids
with the Conjugate Gradient Method,” pp. 24-25.

YOUNGS MODULUS value_1, value.2, ... , valuen
POISSONS RATIO value.1, value_2, ... , value.n
YIELD STRESS'vaIué-I valﬁc; ... , value.n
HARDENING MODULUS value-l value.2, ... , value_n

The values of the tempera.ture—dependent material parameters are given at the n
temperatures specified on the TEMPERATURE input record for this material block.
Values are interpolated to the temperature of the element. If the element tempera-
ture goes outside the range of temperatures given, values are extrapolated from the
nearest two input values.

BETA value
Ranges from 0.0 to 1.0. Zero means only kinematic hardening occurs, while 1.0
means only isotropic hardening occurs.

END

An END record terminates each set of material data.

‘Materml Type 3: 'Iemperature Dependent Secondary Creep

»he omgma.l formulatlon of thls model is described in SAN D81 0998, “]A(,——A Two-




END

forward Euler method developed by C. Stbné, H. Mbrgan, é‘.;h‘k(riylM.Blanford,"an‘d wil] be
documented in a forthcoming SAND report. ‘

YOUNGS MODULUS valu..1, value 2, ... , value.n
POISSONS RATIO value-1, value.2, ... , valus n
CREEP CONSTANT wvalue

STRESS EXPONENT wvalue

THERMAL CONSTANT value

END
An END record terminates each set of material data.

CREEP CONSTANT, STRESS EXPONENT, and THERMAL CONSTANT (= Q@/R) are
constant with respect to temperature. If a THERMAL PROBLEM is not specified, then
the material temperature is assumed to be the value.! given on the TEMPERATURE
record for this material block, and the first value for YOUNGS MODULUS and POISSONS
RATIO is used.

Material Type 4: Isothermal Soil and Crushable Foam

This model was developed by R. Kreig, SC-DR-72-0883, “A Simple Constitutive De-
scription for Soils and Crushable Foams.” The JAC implementation is described in
SAND81-0998, “JAC—A Two-Dimensional Finite Element Computer Program for the
Non-Linear Quasistatic Response of Solids with the Conjugate Gradient Method,” pp.
97-98. Note that the model now uses effective stress rather than .J; in the formulation

of the deviatoric yield function, following the PRONTO/ SANTOS formulation.

SHEAR MODULUS value
BULK MODULUS wvalue

A0 value
Al value
A2 value

PFRAC value
PMAX value

VOLUME STRAIN value.1, value.2, ... , value_8

, ‘APRE’S‘SU’RE ﬁalue,i, vaiu'e;B, o, value 8

~AnEND record mma.teseach set of material data.




Materlal Type 5 Orthotroplc Elastxc

This model is as yet undorumented but should be falrly self -explanatory. (,urreutly
material directions must be aligned with the global axes.

YOUNGS MODULUS E,,, E,,, E,.
POISSONS RATIO v,., v, v,y
SHEAR MODULUS Gy, Gys, Gie
END

An END record terminates each set of material data.

For a transversely isotropic matenal

'Ez?'zEw = E,

Vgy = Vyp = Vs
Vig = Vazy = Vs
Gy = = = G,
v 2(1 + v,)
. )
'yz'= G = Gsn

Material Type 6: Isothermal Elastic Truss

This model is described in SAND87-1305, “JAC3D——A Three-Dimensional Finite Ele-

ment Computer Program for the Nonlinear Quasi-Static Response of Solids with the
Conjugate-Gradient Method.”

YOUNGS MODULUS value
AREA value

All the truss elements using this material ID have the same area.

END

“An END record ternﬁnates each set of material data.

rMaterlal Type 7 Power Law Hardening Elastic Plastic

R Thls model, was develox ed' by C. Stone, G. Wellman, a.nd R. Krelg at Sandla Labs New




POISSONS RATIO value

YIELD STRESS value
The default of zero results in an elastic material.

HARDENING CONSTANT value
HARDENING EXPONENT value
LUDERS STRAIN value

END

An END record terminates each set of material data.

Material Type 10: Sandia Damage Model

This model was developed by D. Bammann, G. Johnson, and M. Chiesa at Sandia Labs
California. For documentation, see for instance SAN D90-8227, “A Strain Rate Dependent
Flow Surface Model of Plasticity.”

YOUNGS MODULUS value_1, value_2, ... , value.n

POISSONS RATIO value_1, value_2, ... , value_n
If a THERMAL PROBLEM is not specified, then the material temperature is assumed

to be the value_1 given on the TEMPERATURE record for this material block, and
the first value for YOUNGS MODULUS and POISSONS RATIO is used.

HEAT COEFFICIENT value
Heat generated from plastic work ( ;";‘%). Not currently implemented.

INITIAL DAMAGE value
Must be nonzero for evolution of damage to occur.

DAMAGE CONSTANT value

C1 value
C2 value
V= C]G-‘Q/a

C3 value
C4 value
Y = C3Cc‘/0

C5 value
C6 value

[ = csemce/®

97




C7 value
C8 value

ra = cre~vs/?

C9 value
C10 value
h —_ cgeclolo

C11 value
C12 value

ry = ¢y e/

C13 value
C14 value
Ry = crze= ol

C15 value
C16 value
H = C15€

C17 value
C18 value
R, = cire=/?

END

An END record terminates each set of material data.
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Appendix B
JAC3D v6.1 Output Description

B.1 General Printed Output

Printed output begins by echoing the input data from unit 5. The GENESIS input
data is also echoed if the GENESIS OUTPUT input record has been specified. A large
amount of data should be expected when printing the GENESIS data. The input section
ends with summary of the dynamic memory allocation for the problem.

Each load step produces at least one page of printed output. The first page is printed
even if the user has not requested output for the time step.

SOLUTION TIME = time

DUTPUT FOR LOAD INCREMENT n

SUM OF X REACTIONS -~-=-=--—-—-=s-=-=o= X

SUM OF Y REACTIONS -=-=-=-==v=~=-=-==- Ty

SUM OF Z REACTIONS ---======r=m=o--o=- rz

NORM OF APPLIED FORCES ---=-===-m==--- fn
RESIDUAL FORCE NORM ---=w=w-w—-cmm———e rn
RESIDUAL FORCE TOLERANCE -==--w=-=-=-- rnn
INCREMENTAL DISPLACEMENT NORM -------- un
INCREMENTAL DISPLACEMENT TOLERANCE ---  unn

CPU TIME FOR LOAD STEP ~====--=======- t1
TOTAL CPU TIME ~=--====-=----rero-o==- t2
NUMBER OF ITERATIONS ON FIRST PASS ---- mnpassa(1)
NUMBER OF ITERATIONS ON SECOND PASS --- npass(2)
TRIAL VELOCITY FACTOR =-======r-s=--==-- factd

Rx, ry, and rz are the total reactions resulting from application of the loads. They
can be compared to the applied loads to obtain a measure of the state of convergence of
the solution. Of particular interest are the reactions in directions where the applied load
is zero. The conjugate gradient method will generally get the reaction in the direction of
the nonzero applied load first in the iteration process, and then reduce the other reactions
to zero.
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The applied force norm fn and displacement norm un are used to calculate ran
(= rn/fn) and unn, respectively, which are compared to the specified residual tolerance
tolr and displacement tolerance tolu. The residual force norm rn is also compared directly
to the specified maximum residual residf. These quantities can be used as a measure
of how close the load step has come in the event the program stops before satisfying
convergence.

The amount of central processor computer time is given for the current load step
and the total time used for the job.

The number of iterations that are used for the current load step is printed to give the
user a measure of how fast the load step has converged. If either the TRIAL LINEAR or
LINEAR PROBLEM option is used, npass(1) is the number of iterations of convergence
of the trial linear or linear solution. For the TRIAL LINEAR option, npass(2) is the
number of iterations needed for the nonlinear solution to the first load step. For a
nonlinear problem without the TRIAL LINEAR option, npass(1) is the total number of
iterations needed for the load step.

Factd is a multiplier used to scale the velocity vector from the previous load step to
obtain a trial velocity vector as an initial guess for the current load step.

Further output is produced at the solution times specified by the QUTPUT FUNC-
TION. Current coordinates and displacements of each node are listed, with X, ¥, and Z
denoting the coordinates and DISX, DISY, and DISZ denoting the components of total dis-
placement. Components of stress in the current deformed configuration carry the labels
SIGX, SIGY, SIGZ, SIGXY, SIGYZ, and SIGZX. The element temperature is called TEMP.
Strains are not calculated or output by the program. If a load step does not converge,
current values of these variables are written to the output file for diagnostic purposes
before the program exits.

B.2 Contact Surface Printed Output

Contact surface data is printed in the following format at the times specified by the

OUTPUT FUNCTION.

INTERFACE NUMBER n

NUMBER MASTER SLAVE LOCATION ON ELEMENT NORMAL NORMAL
ELEMENT NODE ZETA ETA DISPLACEMENT FORCE

The output is ordered first by INTERFACE NUMBER, and then by the NUMBER in the overall
list of interface slave nodes.
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MASTER ELEMENT is the number in a list of the total number of master element
faces with which the SLAVE NODE is interacting. SLAVE NODE lists the node’s global node
number. An interface condition of FIXED, SLIDING, or NO CONTACT is indicated beside
the node number. For a slave node to be in contact, the values of ZETA and ETA must be
greater than —1.001 and less than +1.001. A slave node which is penetrating its master
element face will have a NORMAL DISPLACEMENT less than the diolr value specified for the
contact surface. For a sliding surface slave node to be in contact with a master element
face, the value of the NORMAL FORCE must be less than the value of ftolr specified for the

surface.

B.3 Interim Iteration Printed Output

If the ITERATION PRINT command is used, the following output is obtained every
n iterations.

LOAD NUMBER OF X Y A FORCE DISPLACEMENT
STEP ITERATIONS REACTION REACTION REACTION TOLERANCE  TOLERANCE

The quantities listed under the last five headings are the intermediate values of rx, ry,
rz, ran, and unn, respectively, which are described in Section B.1.

B.4 Plot Data Output

A plot output file is written in the EXODUS format on unit 11 by JAC3D for post-
processing. The following variables are written to the EXQODUS file for each solution
time specified by the PLOT FUNCTION. If a load step does not converge, current values
of these variables are written to the EXODUS file for diagnostic purposes before the
program exits.

B.4.1 Global Variables

Name Description

RN Residual force norm

RNN Residual force tolerance

UN Incremental displacement norm

UNN Incremental displacement tolerance
FN Applied force norm

RX Total reaction force in the z-direction
RY Total reaction force in the y-direction
RZ Total reaction force in the z-direction
ITER | Cumulative total number of iterations
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B.4.2 Nodal Variables

Name

Description

DISPLX
DISPLY
DISPLZ
RESIDX
RESIDY
RESIDZ

Total displacement in the z-direction
Total displacement in the y-direction
Total displacement in the z-direction
Total residual force in the z-direction
Total residual force in the y-direction
Total residual force in the z-direction

Components of the residual forces—RESIDX, RESIDY, and RESIDZ—are the values
of the residuals at the end of the load step. If the load step does not converge, it is
sometimes useful to plot the residuals to identify areas of the mesh where convergence is

difficult.

B.4.3 Element Variables

Continuum Element

Name Description

SIGXX | Stress o,

SIGYY | Stress oy,

SIGZZ | Stress o,

TAUXY | Stress 7oy

TAUYZ | Stress 7,

TAUZX | Stress 7.,

EPX1

EPX2 | Material history variables

TEMP | Temperature at the center of the element
Truss Element

Name Description

SIGXX | Axial stress

TEMP | Temperature at the center of the element

B.4.4 Material History Variable Names

The values in the history variable arrays depend upon the material models used in
the analysis. The following is a description of the variables by material type.




Material Type 1: Isothermal Elastic Plastic

Name

Description

EPX1
EPX2
EPX3
EPX4
EPXS
EPX6

{ EPX7

Yield surface center stress component o
Yield surface center stress component oy,
Yield surface center stress component o,,
Yield surface center stress component 7,
Yield surface center stress component 7y,
Yield surface center stress component 7.,
Accumulated plastic strain

Material Type 2: Temperature Dependent Elastic Plastic

Name

Description

EPX1
EPX2
EPX3
EPX4
EPX5
EPX6
EPX7

Yield surface center stress component o,
Yield surface center stress component o,
Yield surface center stress component o,
Yield surface center stress component 7,
Yield surface center stress component 7,
Yield surface center stress component 7,
Yield surface radius

Material Type 3: Temperature Dependent Secondary Creep

Name

Description

EPX1

Accumulated creep strain

Material Type 4: Isothermal Scil and Crushable Foam

Name Description

EPX1 | Maximum previous volumetric strain {: ositive in compression)

EPX2 | Current value of volumetric strain at v 1) tensile fracture will occur
EPX3 | Current value of volumetric strain (positive in compression)

Material Type 5: Orthotropic Elastic

There are no history variables for this material model.

Material Type 6: Isothermal Elastic Truss

There are no history variables fur this material model.

Material Type 7: Power Law Hardening Elastic Plastic

Name

Description

EPX1

Accumulated plastic strain
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Material Type 10: Sandia Damage Model
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Name Description

EPX1 Backstress component «,,
EPX2 | Backstress component ay,
EPX3 Backstress component «,
EPX4 | Backstress component a.,
EPX5 | Backstress component a,,
EPX6 Backstress component c,
EPX7 | Hardening scalar k

EPX8 | Void fraction ¢

EPX9 | Void fraction rate ¢




Appendix C
Adding a New Constitutive Model to JAC3D

A material model is identified by a name and a number. For example, the isothermal
elastic/plastic model is named ISOTHERMAL ELASTIC PLASTIC and is Material Type L.
A vew material model can easily be added to the JAC3D code. The interface consists of
the following items.

C.1 Initialization of Variables

Several COMMON variables associated with the material models are initialized in
the main program. MAXMC is the second dimension of the EE array used to store tem-
perature/ thermal-strain pairs and material constants. The leading dimension of this
array may dynamically grow to the maximum number of temperature points specified
on a TEMPERATURE input record, but will always be at least 8. Therefore, there are
8 X (MAXMC — 2) locations available to the material model to store material constants. If
more space than this is needed, MACMC may be increased. MAXMCT defines the maximum
number of material constants for any material that has a temperature dependence, and
is used to dimension the CM array. Thus if the program contained ouly the isothermal
elastic/plastic model, these variables would be initialized as shown below.

MAXMC = 7
MAXMCT = 0

Associated with the material number is the number of state variables in the model
(other than stress). In the main program, the following assignments specify the number
of state variables for each model.

IEPSIZ(1)
IEPSIZ(2)
IEPSIZ(3)
IEPSIZ(4)
IEPSIZ(5)
IEPSIZ(6)
IEPSIZ(7)
IEPSIZ(8)
IEPSIZ(9) =
IEPSIZ(10) = 9

7
7
1
3
0
0
1
0
0




For example, the isothermal elastic/plastic model (Material Type 1) needs seven storage
locations (six backstress components and one storage location for the effective plastic
strain). As presently programmed, ten models can be included. The number of models
can be increased by changing the dimension of the IEPSIZ array in the EPSZ common
black:

COMMON EPSZ/IEPSIZ(10) ,NEPSIZ/

If the maximum number of state variables is increased beyond 12 for any material model,
then additional names must be added to the arrays NAMEEL and NMRSEL in SUBROUTINE
IN, and the PARAMETERSs that govern their size must be increased correspondingly. By
convention, the state variable names begin with EPX.

PARAMETER (NCORD=3, NVARNP=9, NVAREL=21, NGLOBL=9)
PARAMETER (NVRSNP=6, NVRSEL=46)

DATA NAMEEL/’SIGXX’,’SIGYY’,’SIGZZ’,’TAUXY’,

1 ’TAUYZ’,’TAUZX’,’SIGT’,’TEMP’,’DEATH’,

2 ’EPX1’,’EPX2’,’EPX3’,’EPX4’,’EPX5’,’EPX6’,

3 ’EPX7',’EPX8’,’EPX9’,’EPX10’,’EPX11’,’EPX12’/
DATA NMRSEL/’SIGXX’,’SIGYY’,’SIGZZ’,

*TAUXY’, *TAUYZ’,'TAUZX'’,’SIGT’,
’EPX1°’,’EPX2’,'EPX3’,’EPX4’, 'EPX5’, ’EPX6’,
’EPX7’ ,’EPX8’,’EPX9°’,’EPX10’,’EPX11’,’EPX12’,
’R11’,°’R21’,’R31’,’R12’,’R22’,’R32’,’R13’,’R23’,’R33’,
’STRECHXX’ , ’STRECHYY’ , ’ STRECHZZ’ ,
>STRECHXY’ , ’STRECHYZ’ , * STRECHZX’ , _
'HG1X’,’HG1Y’,’HG1Z’,’HG2X’, 'HG2Y’,'HG2Z’,
"HG3X’, ’HG3Y’,’HG3Z’, HG4X’ , 'HG4Y’ , 'HG4Z’/

W N O D WN -

Here NVAREL is the dimension of the NAMEEL array, while NVRSEL is the dimension of the
NMRSEL array.

C.2 Material Input and Output

The procedure for reading and echoing model data will now be described. The

isothermal elastic/plastic model will be used as an example of the statements that must

- be included for a new material. First, in SUBROUTINE IN, the material type number is
stored in the array MTYPE.

ELSE IF(WORD1 .EQ. ’ISO’ .AND. WORD2 .EQ. ’ELA’ .AND.
1 WORD3 .EQ. 'PLA’) THEN
_ MTYPE(MATRUM) = 1




The material constants to be input are stored in array EE(NTMAX ,MAXMC,*), where NTMAX
is at least 8. An arbitrary number of values for each material constant may be used to
describe the material’s dependence on temperature. A maximum of three words may be
used to name a material constant.

IF(MATTYPE .EQ. 1) THEN
c ISOTHERMAL ELASTIC PLASTIC MATERIAL

IF( WORD1 .EQ. ’YOU’ .AND. WORD2 .EQ. ’MOD’) THEN
EE(1,3,MATNUM) = RVALUE(3)

ELSE IF( WORD1 .EQ. 'POI’ .AND. WORD2 .EQ. ’RAT’) THEN
EE(1,4,MATNUM) = RVALUE(3)

ELSE IF( WORD1 .EQ. ’YIE’ .AND. WORD2 .EQ. ’STR’) THEN
EE(1,5,MATNUM) = RVALUE(3)

ELSE IF( WORD1 .EQ. ’HAR’ .AND. WORD2 .EQ. ’MOD’) THEN
EE(1,6,MATNUM) = RVALUE(3)

ELSE IF( WORD1 .EQ. 'HAR’ .AND. WORD2 .EQ. ’PAR’) THEN
EE(1,7,MATNUM) = RVALUE(3)

ELSE IF( WORD1 .EQ. ’BET’ ) THEN
EE(1,7 ,MATNUM) = RVALUE(3)

END IF

Here the values are stored beginning with 3 as the second array index. Locations 1 and
9 are used to store the temperatures and thermal strains, respectively. If a material
parameter had a temperature dependence, its values would be stored by varying the first
index of the EE array from 1 to NTMAX, the maximum number of temperature points input.
This model allows the keyword HARDENING PARAMETER as a synonym for BETA.

i

The material constants are echoed in SUBROUTINE PRINTMT. As an example of the
statements that are needed, the following statements are used for the isothermal elas-
tic/plastic model.

IF(MTYPE(N) .EQ.1) WORD = ’ISOTHERMAL ELASTIC PLASTIC’

IF(MTYPE(N) .EQ. 1) THEN
'WRITE (KOUT,5050) EE(1,3,N)
WRITE (KOUT,5060) EE(1,4,N)
WRITE (KOUT,5070) EE(1,5,N)
WRITE (KOUT,5080) EE(1,6,N)
WRITE (KOUT,5090) EE(1,7,N)
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The following FORMAT statements are used for the isothermal elastic/plastic model.

§050 FORMAT(’ YOUNGS MODULUS ',1X,G10.3)
5060 FORMAT(’ POISSONS RATIO ’,1X,6G10.3)

5070 FORMAT(’ YIELD STRESS ',1X,G10.3)
5080 FORMAT(’> HARDENING MODULUS ’,1X,G10.3)
5090 FORMAT(’ BETA ’,1X,610.3)

C.3 Calling the Material Model

The call to the material model which updates the stress every CG iteration must be
added to SUBROUTINE RESFORH. By convention, the name of the material model subrou-
tine is SE (for o-¢, stress-strain) followed by the material type number. The following
statement calls the isothermal elastic/plastic model.

IF(MTYPE(IMM) .EQ.1) CALL SE1(EE(1,1,IMM),
CH(1,LFT),TSIG(1,LFT) ,TEPX(NEP) ,DVEL,
2 DTHS(LFT) ,NEL)

[y

Here EE contains the material constants and CH returns the 21 entries defining a modulus
to be used for the CG line search. TSIG is the current stress in the deformed but unro-
tated configuration, TEPX stores the current state variables, DVEL contains the velocity
gradients, DTHS contains the thermal strains for thermally-loaded problems, and NEL is
the number of elements in the current vector block to be processed by the constitutive
model.

C.4 Interpolating Temperature-Dependent Material Constants

If the new model has moduli that vary with temperature, then SUBROUTINE INTERP1
must be modified. The interpolated material properties are stored in array CM. Values for
the material constants at the beginning and the end of the time step must be calculated.
As an example, the following interpolates four material constants at the beginning and
the end of the time step.

c

c INTERPOLATE AT THE BEGINNING OF THE STEP
[

1)-EE(M-1,1))/(EE(M, 1) -BE(N-1,1))




IF(MTYPE.EQ.2) THEN :
CM(1,1,I) = EE(M-1,3) + RATIO*(EE(M,3)-EE(M-1,3))
CM(1,2,I) = EE(M-1,4) + RATIO*(EE(M,4)-EE(M~1,4))
CM(1,3,I) = EE(M-1,5) + RATIO*(EE(M,5)-EE(M-1,5))
CM(1,4,I) = EE(M-1,6) + RATIO*(EE(M,6)-EE(M-1,6))
END IF

Q

c INTERPOLATE AT THE END OF THE STEP

RATIO = (TH2(I)-EE(M-1,1))/(EE(M,1)-EE(M-1,1))
IF(MTYPE.EQ.2) THEN
CM(2,1,I) = EE(M-1,3) + RATIO*(EE(M,3)-EE(M-1,3))
CM(2,2,I) = EE(M-1,4) + RATIO*(EE(M,4)-EE(M-1,4))
CM(2,3,I) = EE(M-1,5) + RATIO*(EE(M,5)-EE(M-1,5))
CM(2,4,I) = EE(M-1,6) + RATIOQ*(EE(M,6)-EE(M-1,6))
END IF

C.5 The Diagonal of the Stiffness Matrix

SUBROUTINE DIAG calculates the preconditioning matrix M to be the diagional of
the linear stiffness matrix, as described in Section 3.3. The two quantities (A+2u)/V and
#/V must be supplied for each element in the material block, where A and g are the Lamé
parameters for the material and V is the element volume. For example, the following code
is for the isothermal elastic/plastic material model. For this model, EE(1,3) contains
Young’s modulus and EE(1,4) contains Poisson’s ratio.

IF(MTYPE.EQ.1) THEN
E1 = EE(1,3)*(1.0-EE(1,4))/((1.0+EE(1,4))*(1.0-2.0%EE(1,4)))
E2 = 0.5%EE(1,3)/(1.0+EE(1,4))
DO 100 I = 1,NEL
Cc(1,1) = E1/VOL(I)
c(2,I) = E2/VOL(I)
100 CONTINUE

If the new model has temperature-dependent material constants, then the interpolated
values in the CM array should be used instead of the values in the EE array.
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C.6 The Effective Bulk Modulus

SUBROUTINE THFOR uses an effective bulk modulus to calculate the thermal expansion
contribution to the applied loads vector. (The applied loads vector is used only to scale
the residual force norm for comparison with the residual tolerance.) The elastic bulk
modulus must be supplied for each element in the material block. The following code
performs this calculation for the isothermal elastic/plastic model, where EE(1,3) contains
Young’s modulus and EE(1,4) contains Poisson’s ratio.

IF(MTYPE.EQ.1) THEN
BULK = EE(1,3)/(i.0-2.0%EE(1,4))
DO 100 I = 1,NEL
THSIG(I) = BULK+DTHS(I)
100  CONTINUE

As in SUBROUTINE DIAG, if the model has temperature-dependent material constants, CM
should be used instead of EE.

C.7 The Effective Shear Modulus

SUBROUTINE CVIS calculates an effective shear modulus for use in the hourglass
control logic, as described in Section 4.1.1. The elastic shear modulus must be supplied
for each element in the material block. The following code performs this calculation
for the isothermal elastic/plastic model, where EE(1,3) contains Young’s modulus and
EE(1,4) contains Poisson’s ratio.

IF(MTYPE.EQ.1) THEN
DO 100 I = 1,NEL
GA(I) = 0.5+EE(1,3)/(1.0+EE(1,4))
100 CONTINUE

As in SUBROUTINE DIAG, if the model has temperature-dependent material constants, CM
should be used instead of EE.

C.8 The Line Search Modulus

The moduli needed to perform the CG line search as described in Section 3.4.2 are
returned by the material model subroutine in the array C. Twenty-one entries in the
(assumed symmetric) 6 x 6 modulus matrix relating the components of the current stress
increment to the current strain increment must be supplied by the model, stored as
follows:
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C(1) ¢(2) c(6) C(8) c(11) c(16)
C(2) c¢@) ¢ c9) c(12) c(17)
c(6) c(7) c(5) cwo) Cc(13) c(18)
c(8 ¢(9) c(10) c(a) Cc(14) c(19)
C(1t) c(12) c(13) c(14) C(15) ¢(20)
C(16) c(17) c(18) c(19) €(20) c(21)

For the isothermal elastic/plastic model, the secant modulus derived in Section 5.1.6 is
used. If a secant modulus is not available, an elastic modulus or a tangent modulus may

be used. However, the convergence rate of the CG algorithm is affected
of the line search.

by the accuracy




C.9 Example of a Material Model Subroutise: Isothermal

Elastic/Plastic

SUBROUTINE SE1(EE,C,SIG,EPX,DVEL,DTHS,NEL)

C
c
c
c
c
C
c
c
c
C
c
c
c
c
c
C
c
C
C
c
c
c
c
c
C
C
c
C
C
C

ELASTIC-PLASTIC MATERIAL WITH ISOTROPIC AND KINEMATIC HARDENING
THE ROUTINE COMPUTES THE STRESSES FOR NEL ELEMENTS FOR THE
JAC3D PROGRAM.

DVEL CONTAINS INCREMENTAL STRAINS WITH DXY, DYZ, AND DZX BEING
ENGINEERING SHEAR STRAIN QUANTITIES

SEVEN HISTORY VARIABLE OR PLOT VARIABLES FOR THE CONSTITUTIVE
MODEL ARE STORED IN ARRAY EPX

THE CONSTITUTIVE ARRAY C CONTAINS THE ELASTIC OR SECANT
CONSTITUTIVE MATRIX STORED AS

c() c(2) c(6) c(8) c(11) c(16)
c(2 c¢c@ o c(9) c(12) c(17)
c(6) C(7) ¢c(8) C(10) c©(13) c(18)
c(8 c(® c10) c@ c(14) c@19)
c(11) c(12) ¢(13) c(14) c@5) C€(20)
c(16) cC(17) C(18) C(19) c€(20) cC(21)

THE THERMAL STRAIN IS STORED IN THE DTHS ARRAY

INCLUDE ’COMIN’

DIMENSION EE(NTMAX,*),C(21,%),SIG(6,*),EPX(7,*),DVEL(9,*),DTHS(*)

THIRD = 1.0/3.0

QH = EE(1,3)*EE(1,6)/(EE(1,3)-EE(1,6))

QB = EE(1,7)

Qs = EE(1,5)
C1 = EE(1,3)*EE(1,4)/((1.0+EE(1,4))*(1.0-2.0%EE(1,4)))




G2 = EE(1,3)/(1.0+EE(1,4))
G = 0.5%G2
QBQH = QB+QH

c COMPUTE TRIAL STRESS

DO 100 I = {,NEL
DXX = DVEL(1,I)
DYY = DVEL(2,I)
DZZ = DVEL(3,I)
DXY = 2.0*DVEL(4,I)
DYZ = 2.0#DVEL(S,I)
DZX = 2.0*DVEL(6,I)
P = C1%(DXX + DYY + DZZ-3.0*DTHS(I))
SIG(1,I) = SIG(1,I)+P+G2*(DXX-DTHS(I))
SIG(2,I) = SIG(2,I)+P+G2*(DYY-DTHS(I))
SIG(3,I) = SIG(3,I)+P+G2+(DZZ-DTHS(I))
SIG(4,I) = SIG(4,I)+G*DXY
SIG(5,I) = SIG(5,I)+G*DYZ
SIG(6,I) = SIG(6,I)+G+DZX
100 CONTINUE
c

A1l = G2*THIRD
A33 = A11 + C1
IF(QS.EQ.0.0) THEN
A332A1 = A33+2.0%A11
A33A1 = A33-A11
A115 = 1 .5%A11
) DO 110 I = 1,NEL
7 c(1,I) = A332A1
C(3,I) = A332A1
C(5,I) = A332A1
C(2,I) = A33A1
c(6,I) = A33A1
C(7,I) = A33A1
C(4,I) = A115
C(15,I) = A115
C(21,I) = A115




c(13,I) = 0.0
C(14,I) = 0.0
C(16,I) = 0.0
c(17,1) = 0.0
c(18,I) = 0.0
C(19,1I) = 0.0
€(20,I) = 0.0
110  CONTINUE
ELSE

FAC1 = 1.0/(1.5%G2+QH)

FAC2 = 1.5%G2

FAC3 = (1.0-QB)*QH

Al1 = G2*THIRD

A22 = 2,25%G2%G2*FAC1 N
A33 = A11 + C1 :

DO 120 I = 1,NEL e
AK = QS+QBQH*EPX(7,I)
DAL = SIG{1,I)-EPX(1,I)
DA2 = SIG(2,I)-EPX(2,I)
DA3 = SIG(3,I)-EPX(3,I)

Q1 = (2.0%DA1-DA2-DA3)*THIRD
Q2 = (2.0%DA2-DA1-DA3)*THIRD
Q3 = (2.0%DA3-DA1-DA2)*THIRD
Q4 = SIG(4,I)-EPX(4,I)
Q5 = SIG(5,I)-EPX(5,I)
Q6 = SIG(6,I)-EPX(6,I)

AJ2 = Q4xQ4-Q1%Q2- Q2*Q3-Q1*Q3+Q5*Q5+Q6*QS
AK2 = 3,0%AJ2-AK*AK

SCLE = 0.5%(1.0+SIGN(1.0,AK2))

AJ1 = SQRT(3.0*ABS(AJ2))+1.0-SCLE

DEPI = SCLE*FAC1*(AJ1-AK)
EPX(7,I) = EPX(7,I)+DEPI
DEPS = SCLE+FAC2+DEPI/AJ1
DEPN = SCLE*FACB*DEPI/AJ1

' 913(1,1) = SIG(1,I)-DEPS*Q1



816(2,1)
S1G(3,1)
SIG(4,I)
SIG(S,I)
SIG(6,I)

EPX(1,1)
EPX(2,1)
EPX(3,I)
EPX(4,1)
EPX(5,I)
EPX(G,I)

/81G(3,1) -DEPS#g;
'SIG(4, I)~DEPS*Q4
-81G(5,I)-DEPSqs
'SIG(s, I)-DEPS*Q6

EPX(1, I)+DEPI*Q1
EPX(2, I)+DEPH*02
EPX(3 I)+DEPN*Q3
EPX(4, I)+DEPI*Q4
EPX(s, I)+DEPI¢Q5
EPX(G I)+DEPI*Q6

Al = A11*(1 O-DEPS*SCLE)
A2 = A22*AK*SCLE/(AJI**3 0)

c(1, I) = A33 + 2 0%A1 - A2%Q1%Q1
C(3,I) = A33 + 2.0%A1 - A2%Q2xQ2

C(5,I1)
€(2,1) =

A33 + 2.0%A1 - A2%Q3+Q3
A33 - AL - A2%Q2#Q1

C(6,I) = A33 - A1 - A2+Q14Q3

C(7,I) = A33 - A1 - A2%Q2%Q3

C(4,1) =
C(15,1) =
C(21,1) =
c(8,I) =
Cc(9,I) =
C(10,I) =
C(11,1)
c(12,1)
c(13,1)
C(14,1)
c(16,I)

c(1a I)

c(17, I) =

1.6%A1 - A2+Q4%Q4x0.5
1.5%A1 - A2+Q5%Q5%0.5
1.6%A1 - A2+Q6%Q6%0.5

-A2%Q1%Qq

-A2%Q2#Q4

-A2%Q3+Q4

-A2%Q5%Q1

-A2%Q5%Q2

-A2+Q5%Q3

-A2%Q5%Q4

-A2%Q6*Q1

-A2%Q6%Q2

-A2+Q6%Q3

+ ~A2%Q6%Q4

u-A2*QG*Q5







Appendix D
RIB and SEPDB Information

The following information is provided for the benefit of the Yucca Mountzin Project.

D.1 Information from the Reference Information Base Used
in this Report

This report contains no information from the Reference Information Base.

D.2 Candidate Information for the Reference Information Base
This report contains no candidate inforination for the Reference Information Base.

D.3 Candidate Information for the Site and Engineering Prop-
erties Data Base

This report contains no candidate information for the Site and Engineering Proper-
ties Data Base.

117







J. W. Barlett (RW-1)

Director

OCRWM

US Department of Energy
1000 Independence Avenue SW
Washington, DC 20585

F. G. Peters (RW.2)

Deputy Director

OCRWM

US Department of Energy
1000 Independence Avenue SW
Washington, DC 20585

T. H. Isaacs (RW-4)

Office of Strategic Planning and
International Programs

OCRWM

US Department of Energy

1000 Independence Avenue SW

Washington, DC 20585

J. D, Saltzman (RW-§)

Office of External Relations
OCRWM

US Department 'of Energy
1000 Independence Avenue SW
Washington, DC 20585

Samuel Rousso (RW-10)

Office of Program and Resource Mgt.
OCRWM

US Department of Energy

1000 Independence Avenue SW
Washington, DC 20585

J. C. Bresee (RW-10)
OCRWM S

US ‘Department of Energy
1000 Independence Avenue SW
Washington, DC 20585

Distribution - 1

YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

DISTRIBUTION LIST

C. P. Gertz (RW-20)

Office of Geologic Disposal
OCRWM

US Department of Energy

1000 Independence Avenue, SW
Washington, DC 20585

S. J. Brocoum (RW-22)

Analysis and Verification Division
OCRWM

US Department of Energy

1000 Independence Avenue SW
Washington, DC 2585

J. Roberts, Acting Associate Director
(RW-30)

Office of Systems and Compliance
OCRWM

US Department of Energy

1000 Independence Avenue, SW
Washington, DC 20585

J. Roberts (RW-33)

Director, Regulatory Compliance
Division

OCRWM

US Department of Energy

1000 Independence Avenue, SW

Washington, DC 20585

G. J. Parker (RW-332)
OCRWM

US Department of Energy

1000 Independence Avenue, SW
Washington, DC 20585

R. A, Milner (RW-40)

Office of Storage and
Transporation

OCRWM

US Department of Energy

1000 Independence Avenue, SW

Washington, DC 20585




12

S. Rousso, Associate Director
(RW-50)

Office of Contract Business
Management

OCRWM

US Department of Energy

1000 Independence Avenue, SW

Washington, DC 20585

T. Wood (RW-52)

Director, M&0 Management Division
OCRWM

US Department of Energy

1000 Independence Avenue, SW
Washington, DC 20585

Victoria F. Reich, Librarian

Nuclear Waste Technical Review Board
1100 Wilson Blvd, Suite 910

Arlington, VA 22209

C. P. Gertz, Project Manager
Yucca Mountain Site
Characterization Project Office
US Department of Energy

P.O. Box 98608--MS 523

Las Vegas, NV 89193-8608

C. L. West, Director
Office of External Affairs
DOE Nevada Field Office
US Department of Energy
P.O. Box 98518

Las Vegas, NV 89193-8518

Technical Information Officer
DOE Nevada Field Office

US Department of Energy
P.O. Box 98518

Las Vegas, NV 89193-8518

P, K. Fitzsimmons, Technical Advisor
Office of Assistant Manager for
Environmental Safety and
Health

DOE Nevada Field Office

US Department of Energy

P.O. Box 98518

Las Vegas, NV 89193.8518

Distribution - 2

D. R. Elle, Director

Environmental Protection and Division
DOE Nevada Field Office

US Department of Energy

P.O. Box 98518

Las Vegas, NV 89193-8518

Repository Licensing & Quality
Assurance

Project Directorate

Division of Waste Management

US NRC

Washington, DC 20555

Senior Project Manager for Yucca
Mountain

Repository Project Branch
Division of Waste Management
US NRC

Washington, DC 20555

NRC Document Control Desk
Division of Waste Management
US NRC

Washington, DC 20555

Philip S. Justus

NRC Site Representive

301 E Stewart Avenue, Room 203
Las Vegas, NV 89101

E. P. Binnall

Field Systems Group Leader
Building 50B/4235

Lawrence Berkeley Laboratory
Berkeley, CA 94720

Center for Nuclear Waste
Regulatory Analyses

6220 Culebra Road

Drawer 28510

San Antonio, TX 78284

W. L. Clarke

Technical Project Officer - YMP

Attn: YMP/LRC

Lawrence Livermore National
Laboratory

P.O. Box 5514

Livermore, CA 94551




J. A. Blink

Deputy Project Leader

Lawrence Livermore National
Laboratory

101 Convention Center Drive

Suite 820, MS 527

Las Vegas, NV 89109

J. A, Canepa

Technical Project Officer - YMP
N-§, Mail Stop J521

Los Alamos National Laboratory
P.O. Box 1663

Los Alamos, NM 87545

H. N. Kalia

Exploratory Shaft Test Manager
Los Alamos National Laboratory
Mail Stop 527

101 Convention Center Dr., #820
Las Vegas, NV 89101

N. Z. Elkins

Deputy Technical Project Officer
Los Alamos National Laboratory
Mail Stop 527

101 Convention Center Dr., #820
Las Vegas, NV 89101

L. E. Shephard

Technical Project Officer - YMP
Sandia National Laboratories
Organization 6302

P.O. Box 5800

Albuquerque, NM 87185

J. F. Devine

Asst Director of Engineering Geology
US Geological Survey

106 National Center

12201 Sunrise Valley Drive

Reston, VA 22092 ~

L. R. Hayes

Technical Project Officer

Yucca Mountain Project Branch
MS 425

US Geological Survey

P.O. Box 25046

Denver, CO 80225

Distribution - 3

V. R. Schneider

Asst. Chief Hydrologist--MS 414

Office of Program Coordination
and Technical Support

US Geological Survey

12201 Sunarise Valley Drive

Reston, VA 22092

J. S. Stuckless

Geologic Division Coordinator
MS 913

Yucca Mountain Project

US Geological Survey

P.O. Box 25046

Denver, CO 80225

D. H. Appel, Chief

Hydrologic Investigations Program
MS 421

US Geological Survey

P.O. Box 25046

Denver, CO 80225

E. J. Helley

Branch of Western Regional Geology
MS 427

US Geological Survey

345 Middlefield Road

Menlo Park, CA 94025

R. W. Craig, Chief

Nevada Operations Office
US Geological Survey

101 Convention Center Drive
Suite 860, MS 509

Las Vegas, NV 89109

D. Zesiger

US Geological Survey

101 Conventional Center Drive
Suite 860, MS 509

Las Vegas, NV 89109

G. L. Ducret, Associate Chief
Yucca Mountain Project Division
US Geological Survey

P.O. Box 25046

421 Federal Center

Denver, CO 80225



A. L. Flint

US Geological Survey
MS 721

P.O. Box 327
Mercury, NV 89023

D. A. Beck

Water Resources Division, USGS
6770 S Paradise Road

Las Vegas, NV 89119

P. A. Glancy

US Geological Survey
Federal Building, Room 224
Carson City, NV 89701

Sherman S.C. Wu
Branch of Astrogeology
US Geological Survey
2255 N Gemini Drive
Flagstaff, AZ 86001

J. H. Sass - USGS
Branch of Tectonophysics
2255 N Gemini Drive
Flagstaff, AZ 86001

DeWayne Camphell

Technical Project Officer - YMP
US Bureau of Reclamation
Code D-3790

P.O. Box 25007

Denver, CO 80225

J. M. LaMonaca
Records Specialist
US Geological Survey
421 Federal Center
P.O. Box 25046
Denver, CO 80225

W. R. Keefer - USGS
913 Federal Center
P.O. Box 25046
Denver, CO 80225

M. D. Voegele

Technical Project Officer - YMP
SAIC

101 Convention Center Drive
Suite 407

Las Vegas, NV 89109

Distribution - 4

L. D. Foust

Nevada Site Manager

TRW Environmental Safety
Systems

101 Couvention Center Drive

Suite 540, MS 423

Las Vegas, NV 89109

C.E, Ezra

YMP Support Office Manager
EG&G Energy Measurements In¢
MS V02

P.O. Box 1912

Las Vegas, NV 89128

E. L. Snow, Program Manager
Roy F. Weston Inc

955 L’Enfant Plaza SW
Washington, DC 20024

Technical Information Center
Roy F. Weston Inc

955 L’Enfant Plaza SW
Washington, DC 20024

D. Hedges, Vice President, QA
Roy F, Weston Inc

4425 Spring Mountain Read
Suite 300

Las Vegas, NV 89102

D. L. Fraser, General Manager

Reynolds Electrical &
Engineering Co, Inc

MS 408

P.O. Box 98521

Las Vegas, NV 89193-8521

B. W. Colston, President and
General Manager

Las Vegas Branch

Raytheon Services Nevada

MS 416

P.O. Box 95487

Las Vegas, NV 89193-5487

R. L. Bullock

Technical Project Officer - YMP
Raytheon Services Nevada

Suite P-250, MS 403

101 Convention Center Drive
Las Vegas, NV 89109




A. T. Tamura

Science and Technology Division
OSTI

US Department of Energy

P.O. Box 62

Oak Ridge, TN 37831

Carlos G. Bell Jr

Professor of Civil Engineering

Civil and Mechanical Engineering Dept.
University of Nevada, Las Vegas

4505 S Maryland Parkway

Las Vegas, NV 89154

P. J. Weeden, Acting Director

Nuclear Radiation Assessment Div.

US EPA

Environmental Monitoring
Systems Lab

P.O. Box 93478

Las Vegas, NV 89193-3478

ONWI Library

Battelle Columbus Loboratory
Office of Nuclear Waste Isolation
508 King Avenue

Columbus, OH 43201

T. Hay, Executive Assistant
Office of the Governor
State of Nevada

Capitol Complex

Carson City, NV 89710

R. R. Loux

Executive Director

Agency for Nuclear Projects
State of Nevada ’
Evergreen Center, Suite 252
1802 N. Carson Street .
Carson City, NV 89710

C. H. Johnson

Technical Program Manager
Ageacy for Nuclear Prejects
State of Nevada

Evergreea Center, Suite 252
1802 N. Carson Street
Carson City, NV 89710

John Fordham

Water Resources Center
Desert Research Institute
P.0O. Box 60220

Reno, NV 89506

David Rhode

Desert Research Institute
P.O. Box 60220

Reno, NV 89506

Eric Anderson

Mountain West Research-
Southwest Inc

2901 N Central Avenue #1000

Phoenix, AZ 85012-2730

The Honorable Cyril Schank

Chairman

Churchill County Board of
Commissioners

190 W First Street

Fallon, NV 89406

Dennis Bechtel, Coordinator

Nuclear Waste Division

Clark County Department of
Comprehensive Planning

301 E Clark Avenue, Suite 570

Las Vegas, NV 89101

Juanita D. Hayes

Nuclear Waste Repository
Oversight Program

Esmeralda County

P.O. Box 490

Goldfield, NV 89013

Yucca Mountain Information
Office

Eureka County

P.O. Box 714

Eureka, NV 89316




Brad Mettam

Inyo County Yucca Mountain
Repository Assessment Office

Drawer L

Independence, CA 93526

The Honorable Gloria Derby

Chairman

Lander County Board of
Commissioners

315 South Humbolt

Battle Mountain, NV 89820

The Honorable Edward E. Wright

Chairman

Lincoln County Beard of
Commissioners

P.O. Box %0

Pioche, NV 89043

Vernon E. Poe

Office of Nuclear Projects
Mineral County

P.O. Box 1026
Hawthorne, NV 89415

The Honorable Barbara J. Raper

Chairman

Nye County Board of
Commissioners

P.O. Box 1240

Pahrump, NV 89041

Planning Department
Nye County

P.O. Box 153
Tonopah, NV 89049

Florindo Mariani

White Pine County Nuclear
Waste Project Oftice

457 Fifth Street

Ely, NV 89301

Judy Foremaster

City of Caliente Nuclear Waste
Project Office

P.O. Box 158

Caliente, NV 89008

Distribution - 6

Jason Pitts

Lincoln County Nuclear Waste
Project Office

Lincoln County Courthouse

Pioche, NV 89043

Economic Development Dept.
City of Las Vegas

400 E. Stewart Avenue

Las Vegas, NV 89101

Commmunity Planning and
Development

City of North Las Vegas

P.O. Box 4086

North Las Vegas, NV 89030

Community Development and
Planning

City of Boulder City

P.O. Box 61350

Boulder City, NV 89006

Commission of the European
Communities

200 Rue de la Loi

B-1049 Brussells

BELGIUM

M. J. Dorsey, Librarian

YMP Research and Study Center

Reynolds Electrical &
Engineering Co Inc

MS 407

P.O. Box 98521

Las Vegas, NV 89193-8521

Amy Anderson

Argonne National Laboratory
Building 362

9700 S Cass AVenue
Argonne, IL. 60439

Steve Bradhurst
P.O. Box 1510
Reno, NV 89505

Michael L. Baughman
35 Clark Road
Fiskdale, MA 01518




Glenn Van Roekel
Director of Community
Development

City of Caliente

P.O. Box 158

Caliente, NV 89008

1 Ray Williams, Jr
P.O. Box 10
Austin, NV 89310

R. F. Pritchett

Technical Project Officer - YMP
Reynolds Electrical &
Engineering Co Inc

MS 408

P.O. Box 98521

Las Vegas, NV 89193-8521

1 Charles Thistlethwaite, AICP
Associate Planner
Inyo County Planning Department
Drawer L

Independence, CA 93526

Les Bradshaw S
Nye County District Attorney
P.O. Box 593

Tonopah, NV 89049

1 Dr. Moses Karakouzian
1751 E Reno #1258
Las Vegas, NV 89119

1 Dr. R. T. Allen
Pacifica Technology
P.O. Box 148
Del Mar, CA 92014

1 Prof. S. Atluri
Center for the Advancement of
Computational Mechanics
School of Civil Engineering
Georgia Institute of Technology
Atlanta, GA 30332

1 Dr. Ali S. Argon
Department of Mechanical
Engineering
MIT

Cambridge, MA 02139

Areojet Research Propulsion Inst.

21005-5066

Distribution - 7

Dr, Willinm E. Bachrach

P. O. Box 13502
Sacramento, CA 95853-4502

Mr. Ken Bannister

USA Baliistic Research Lab
SLCBR-IB-M

Aberdeen Proving Grounds, MD

Prof. E. B, Becker
Department of Aerospace
Engineering and
Engineering Mechanics
University of Texas at Austin
Austin, TX 78712-1085

Prof. M. Stern
Department of Aerospace
Engineering and
Engineering Mechanics
University of Texas at Austin
Austin, TX 78712-1085

Prof. J. T. Oden
Department of Aerospace Engineering
and Engineering Mechanics
University of Texas at Austin

Austin, TX 78712-1085

Prof. T. Belytschko

Department of Civil Engineering
Northwestern University
Evanston, IL 60201

Dr. Kenneth W, Brown
Computer Aided Engineering
Associates, Inc.

398 Old Sherman Hill Rd.
Woodbury, CT 06798

Dr. Tom Canfleld

Argonne National Laboratories
9700 S. Cass Ave CTD/221
Argonne, IL 60439-4844

Mr. Tien S. Chou
EG&G Mound

P.O. Box 3000
Miamisburg, OH 45343




Mr. Chuck Charman
GA Technologies

P.O. Box 81608

San Diego, CA 92138

Mr. Ken K. Chipley

Martin Marictta Energy Systems
P.O. Box 2009

Oak Ridge, TN 37831-8053

Mr. Ken P. Chong

Dept. of Civil Engineering
University of Wyoming
Laramie, WY 82071

Dr. 8. C. (Tony) Chou

U.S. Army Materdals Technology Lab
SLCMT-BM

Watertown, MA 02172-0001

Mr. Dwight Clark

Mail Stop 281

Morton Thiokel Corp.
P. O. Box 524

Brigham City, UT 84302

Mr. Gerald Collingwood
Morton Thiokol, Inc.
Huntsville, AL 35807-7501

Steven Crouch

GeoLogic Research, Inc.
1313 Fifth St. SE, Suite 226
Minneapolis, MN 55414

Dr. Jan Cullis

XTZ Division

Royal Armament R&D Establishment
Fort Halstead

Sevenoaks, Kent

United Kingdom

Mr. Richard E. Danell
Research Officer

Central Research Laboratories
BHP Research/New Techaology
P.O. Box 188

Wallsend NSW 2287

Australia

Distribution - 8

Mr. William A. Danne

Strategic Systems Division, MS#50
Teledyne Brown Engineering

P.O. Bex 07007

Huntsville, AL 35807-7007

Dr. C. S. Desai

Dept. of Civil Eng. & Eng. Mech.
University of Arizona

Tucson, AZ, 85721

Mr. Ramji Digumarthi
Org. 8111, Bidg. 157
Lockheed MSD

P.O. Box 3504

Sunnyvale, CA 94088-3504

Mr. J. Donald Dixon
Spokane Research Center
U.S. Bureau of Mines
318 Montgomery Avenue
Spokane, WA 99207.2291

Dr. Hamid Maleki
Spokane Research Center
U.S. Bureau of Mines
315 Montgomery Avenue
Spokane, WA 99207-2291

Prof. Robert Dodds, Jr.
Department of Civil Engineering
3140 Newmark Laboratory, MC-250
University of Illinois at Urbana
Urbana, IL 61801-2397

Dr. R. S. Dunham

Anatech International Corp.
3344 N. Torrey Pines Ct.
Suite 320

La Jolla, CA 92037

Dr. Joe Rashid

Anatech International Corp.
3344 N. Torrey Pines Ct.
Suite 320

La Jolla, CA 92037

Dr. Ario Fossum
RE/SPEC Inc.

Box 728 .

Rapid City, SD 57709




1 Dr., Russel Garusworthy
CRA Advanced Tech Development
G.P.O. Bex 384D
Melbourne 3001, Australia

1 Loren K. Miller
Goodyear Technical Center
P.O. Box 3531
Akron, OH 44309-3531

1 David Wismer, D/410F
Goodyear Technical Center
P.O. Box 3531
Akron, OH 44309-3531

1 Dr. Gerry Goudreau
Methods Development Group
Mechanical Engineering Department
Lawrence Livermore National Lab
Livermore, CA 94550

1 Mr. H. L. Hassenpflug
B&W Fuel Company
P.0O. Box 10935
3315 Old Forest Rd
Lynchburg, VA 24501

1 Dr. David Hibbitt
Hibbitt, Karlsson & Sorrensen, Inc,
100 Medway St.
Providence, RI 02906

1 Dr. Joop Nagtegaal
Hibbitt, Karlsson & Sorrensen, Inc.
100 Medway St. S
Providence, RI 02906

1 Dr. D. P. Flanagan :
Hibbitt, Karlsson & Sorrensen, Inc.

100 Medway St.
Providence, R1 02906

1 Dr. L. M. Taylor
Hlbbltt, Karisson & Sorrensen, Inc.
108 Medway St.
Providenee, R1 02906

' Prof. T. J. R. Hughes

Mrlichrdﬂlu-

M/S 4G :
G‘lEGoven-euSy:te-sCorporaﬁou
P.O. Box 7188

Mountala View, CA 94039

Douglas Holzhauer

Rome Air Development Ceater
Griffith AFB, NY 13441

Dr. William Hufferd
United Technologies
Chemical Systems Division
P.O. Box 50015

San Jose, CA 95150-0015

Department of Mechanical Engineering
Stanford University
Palo Alto, CA 94306

Mr. James P. Johnson

Rm L120, CPC Analysis Dept.
General Motors Corp.
Engineering Center

30003 Van Dyke Avenue
Warren, MI 48090-9060

Mr. Jerome B. Johnson
USACRREL

Building 4070

Ft. Waiuwright, AK 99703

Ken Johnson

Theoretical and Applied Mechanics
Group

Battelle Pacific Nerthwest Laboratories

P.O. Box 999

Richland, WA 99382

Dr. Gordon R. Johnson
Honeywell, Inc.

5901 S. County Rd. 18
Edina, MN 55436

Dr. Rembert Jones

Office of Naval Research

Structural Mechanics Div. (Code 434)
800 N. Quincy Street

Arlington, VA 22217




Dr. Alan S. Kushner

Office of Naval Research

Structural Mechanics Div. (Code 434)
800 N. Quincy Street

Arlingtom, VA 22217

Dr. Mike Katona

TRW Ballistic Missiles Division
Bldg 527, Rm 709

P.O. Box 1310

San Bernadino, CA 92402

Mr. Richard Lung

TRW Ballistic Missiles Division
Bldg 527, Rm 709

P.O. Box 1310

San Bernadino, CA 92402

Mr. Gary Ketner

Applied Mechanics and Structures
Battelle Pacific Northwest Laboratories
P.O. Box 999

Richland, WA 99352

Dr. Sam Key

RE/SPEC Inc.

4775 Indian School NE, Suite 300
Albuquerque, NM 87110-3827

Prof. Raymond D. Krieg
Engineering Science and Mechanics
301 Perkins Hall

University of Tennessee

Knoxville, TN 37996-2030

Don D. Kunard

Analytical Systems Engineering Corp.
1725 Jefferson Davis Hwy, Suite 212
Arlington, VA 22202

Prof. J. K. Lee

Department of Engineering Mechanics
Ohio State University

Columbus, OH 43210

Mr. Brett Lewis

APTEK

1257 Lake Piaza Drive

Colorado Springs, CO 80906-3578

Distribution - 10

J. Hopson, T3, MS B216
Los Alamos National Laboratory
Los Alamos, NM 87548

R. Hill, P15, MS D449
Los Alamos National Laboratory
Los Alamos, NM 87545

F. Guerra, WX-11, MS C931
Los Alamos National Laboratory
Los Alamos, NM 87545

B. M. Wheat, MEE-4, MS G787
Los Alamos National Laboratory
Los Alamos, NM 87545

E. S. ldar, MEE-4, MS G787
Los Alamos National Laboratory
Los Alamos, NM 87545

M. W. Lewis, MEE-4, MS G787
Los Alamos National Laboratory
Los Alamos, NM 87548

J. P. Hill, WX-11, MS C931
Los Alamos National Laboratory
Los Alamos, NM 87545

D. J. Sandstorm, MST-DO, MS G756
Los Alamos National Laboratory
Los Alamos, NM 87545

K. A, Meyer, X-3 MS F663
Los Alamos National Laboratory
Los Alamos, NM 87545

W. A. Cock, N-6, MS K557
Los Alamos National Laboratory
Los Alamos, NM 87545

P. T. Maulden, N-6, MS K557
Los Alamos National Laboratory
Los Alamos, NM 87545

J. J. Ruminer, WX-11, MS C931
Los Alamos National Laboratory
Los Alamos, NM 87545

8. P. Girrens, MEE-13, MS J576
Los Alamos National Laboratory
Los Alamos, NM 87545




Treat R. Logan

Rockwell International Corp.
P.O. Box 92098

Los Angeles, CA 90009

J. L. Fales, MEE-13, MS J57§
Los Alamos National Laboratory
Los Alamos, NM 87545

J. D. Allen, MEE-4, MS G787
Los Alamos National Laboratory
Los Alamos, NM 87545

D. A. Rabern, MEE-4, MS G787
Los Alamos National Laboratory
Los Alamos, NM - 87545

M. W. Burkett, MEE-4, MS G787
Los Alamos National Laboratory
Los Alamos, NM ‘87545

J. H. Fu, MEE-4, MS G787
Los Alamos National Laboratory
Los Alamos, NM 87545

P. R. Romero, MEE-4, MS G787
Los Alamos National Laboratory
Los Alamos, NM 87545

P. S. Follanshee, MST-DO, MS G756
Los Alamos National Laboratory
Los Alamos, NM 87545

R. F. Davidson, N-6, MS K557
Les Alamos National Laboratory
Los Alamos, NM 87548

D. Mandell, X-3, MS F663
Les Alamos National Laboratory
Los Alamos, NM 87545

J. N. Johnsen, N-6, MS K557
Los Alamos National Laboratory
Los Alamos, NM 87545

J. K. Dienes, N-6, MS K557
Los Alamos National Laboratory
Los Alamos, NM 87545

S. Marsh, N-6, MS K857
Los Alamos, NM 87545

Distribution - 11

L. H. Sullivan, N-6, MS K557
Los Alamos National Laboratory
Los Alamos, NM 87545

R. B. Parker, MEE-4, MS G787
Los Alamos National Laboratory
Los Alamos, NM 87545

D. C. Nelson, MEE-4, M3 G787
Los Alamos National Laboratory
Los Alamos, NM 87545

T. A. Butler, MEE-13, MS J576
Los Alamos National Laboratory
Los Alamos, NM 87545

J. G. Bennett, MEE-13, MS J576
Los Alamos National Laboratory
Los Alamos, NM 87545

C. A. Anderson, MEE-13, MS )576
Los Alamos National Laberatory
Los Alamos, NM 87545

D. L. Jaeger, WX-11, MS K557
Los Alamos National Laboratory
Los Alamos, NM 87545

David Medina

PL/WSSD

Phillips Laboratory (AFSC)
Kirtland AFB, NM 87117-6008

- Mr. Hans Mair, Code R14

Naval Surface Warfare Center
10901 New Hampshire Ave.
Silver Spring, MD 20903-5000

Mr. Andrew Wardlaw, Jr., Code R4
Naval Surface Warfare Center
10901 New Hampsure Ave.

Silver Spring, MD 20903-5000

Dr. Jack Maison

Engineering Cybernetics, Inc.
1856 Lockhill Seima Rd, Suite 105
San Antonio, TX 78213



1 Joseph Marti 1 Dr. Carl Dyka, Code 6380

Hamilton Standard Division Naval Research Lab
of United Technologies Washington, DC 20375-5000
M/S 1-3-BCS2
- One Hamilton Road 1 Dr. R. E. Nickell
Windsor Locks, CT 06096-1010 c/o Anatech International Corp.
3344 N. Torrey Pines Ct, Suite 320
1 Darin McKinnis La Jolla, CA 92037
NASA Pyrotechnics Group, MS EPS
LBJ Space Center 1 Mr. Dean Norman
Houston, TX 77058 Waterways Experiment Station
P.0. Box 631
’ 1 Mr. Craig Miller Vicksburg, MS 39180
Unit 973 '
Neutron Devices Departmen 1 Dr. Robert Pardue
General Electric Company Martin Marietta, MS 2
P.O. Box 2908 Y-12 Plant, Bldg. 9998
Largo, FL. 34294-2908 Oak Ridge, TN 37831

Mr. J. J. Murphy, §9-22 B/580 Dr. T. Kim Parnell
Lockheed Missiles and Space Co. Failure Analysis Associates, Inc.
P. O. Box 3504 P.O. Box 3015

Sunnyvale, CA 94088-3504 Menlo Park, CA 94028

Brian M. Cuthbert, 81-12 B/157 Mr. Mitchell R. Phillabaum

Lockheed Missiles and Space Co. Monsanto Research Corp.
P. O. Box 3504 MRC-MOUND

Sunnyvale, CA 94088-3504 Miamishurg, OH 45342

1 Prof. V. D, Murty 1 John Cowles, MS 118-38
School of Engineering Pratt & Whitney Aircraft
University of Portland 400 Main St.

5000 N. Willamette Bivd. East Hartford, CT 06108

Portland, OR 97203

_ 1 Mick Bruskotter, MS 114-38 b
1 Prof. S. Nemat-Nasser Pratt & Whitney /ircraft g
Department of Applied Mechanics 400 Main St. §
and Engineering Sciences East Hartford, CT 06108 i
University of California San Diego ¢
La Jolla, CA 92093 1 Dr. Harold E. Read ‘
S-Cubed
1 Prof. Dave Benson P.0. Box 1620
Department of Applied Mechanics La Jolla, CA 92038-1620
and Engineering Sciences |
University of California San Diego 1 Dr. Douglas Reeder
La Jolia, CA 92093 Hardening Technology Dept.
1 General Research Corp.
[ 1 Mr. Jima Nemes, Code 6331 P.O. Box 6770
* Naval Research Lab Santa Barbara, CA 93160-6770

Washington, DC 20375-5000

Distribution - 12




Dr. J. A. Reuscher
Texas A& M

Dept. of Nuclear Engineering
Coliage Station, Texas 77843

Mr. J. 8. (Gus) Rice
Caterpillar Inc. Techuical Center
Division 927

P.O. Box 1875
Peoria, IL. 61656-1875

Steven Rieco

POD Associates, Inc.
2309 Renard Pi, Suite 201
Albuquerque, NM 87106

Mr. Samit Roy

Dept. of Engineering Mechanics
Southwest Research Institute
P.0O. Drawer 28510

San Antonio, TX 78284

Mr. Donald W. Sandidge
AMSMI-RLA

U.S. Army Missile Command
Redstone Arsenal, AZ 35898-5247

Mr, Steven Sauer

Ktech Corporation

901 Pennsyivania Ave NE
Albuquerque, NM 87110

Martin Schmidt, M/S 4G09
WL/MNSA
Eglin AFB, FL 32542-5434

Mr. Luka Serdar, Jr.
Kaman Sciences Corporation
AviDyne Office

83 Second Ave

Burlington, MA 01803-4479

Harvey Singer

Science Applications International
P.O. Box 1303

McLean, VA 22102-13031

Mark E, Smith

Arvin Calspan Corp.

AEDC Division, M/S 440
Arnold AFB, TN 37389-9998

Distribution - 13

Mr, Ray Stowdt

Lawrence Livermore National Lab
P.O. Bex 808, L200
Livermore, CA 94550

Prof. D. V. Swenson

Mechanical Engincering Department
Kansas State University
Mankattan, KS 66506

Mr. David L. Conover
Swanson Analysis Systems, Inc.
P. O. Box 65

Houston, PA 15342-0065

Mr. James W. Jones
Swansoa Service Corporation
18700 Beach Bivd,

Suite 200-210

Huntington Beach, _.A 92648

Mr. Sing C. Tang

Rm 3039 Scientific Lab

P. O. Box 2053

Dearborn, MI 48121-2053

Dave Edwards, MS 129-13

United Technologies Research Center
411 Silver Lane

East Hartford, CT 06108

Robert LaBarre, MS 129-20

United Technologies Research Center
411 Silver Lane

East Hartford, CT 06108

Tony Glamei, MS 129-22

United Technologies Research Center
411 Silver Lane

East Hartford, CT 06108

Tom Vasko

United Technologies Research Center
411 Silver Lane

East Hartford, CT 06108

Mr. David Wade, 36E

Bettis Atomic Power Laboratory
P.O. Box 79

West Miffland, PA 15122




Dr. Krishan K. Wahi
Gram, Inc.

1709 Moon NE
Albuquerque, NM 87112

Dr. Paul T, Wang

Fabricating Technology Division
Alcoa Technical Center

Alcoa Center, PA 15069

Dr. Ted B. Wertheimer

MARC Analysis Research Corporation
260 Sheridan Ave, Suite 309

Palo Alto, CA 94306

Todd Hoover

Westinghouse Electric Coporation
Bettis Atomic Power Laboratory
P.O. Box 79

West Mifflin, PA 15122-0079

Claire Knolle

Westinghouse Electric Coporation
Bettis Atomic Power Laboratory
P.O. Box 79

West Mifflin, PA 15122-0079

Dan Kotcher

Westinghouse Electric Corporation
Bettis Atomic Power Laboratory
P.O. Box 79

West Mifflin, PA 15122-0079

Wayne Long

Westinghouse Electric Coporation
Bettis Atomic Power Laboratory
P.O. Box 79

West Mifflin, PA 15122-0079

Prof. Tomasz Wierzhicki
Dept. of Ocean Engineering
MIT

Cambridge, MA 02139

Dr. John Wilson

Department of Geoscience

NM Institute of Mining & Technology
Socorro, NM 87801

Distribution - 14

Dr, Albert Yao
SMCRI-SEE-A

Rock Island Arsenal

Rock Island, 1L 61299-5000

Mr. J. A. Zukas

Computational Mechanics Consultants
8600 La Salle Road, Suite 614

Towson, MD 21204




SANDIA INTERNAL

1200
1231
1239
1400
1425
1425
1428
1428
1428
1431
1431
1434
1501
1502
1561
1561
1561
1561
1561
1561
1561
1561
1561
1561
1561
1561

u--:—v-v-i——v—-n—u——o—t—u—n—v-s—v---v-—-—-—-—-—t—n—n-—-—u—'-v—r——gng'-sv—h—n——

George Alishouse
Thomas Sanford
Frank Dempsey
Ed Barsis

Johnny Biffle
Stephen Attaway
Mark Blanford
William Bohnhoff
Marilyn Smith
Michael McGlaun
James Peery
David Martinez
Carl Peterson
Paul Hommert
Harold Morgan
Edward Hoffman
Gerald Wellman
James Koteras
Joe Weatherby
Jose Arguello Jr.
Mark Rashid
Martin Heinstein
Michael Neilsen
Robert Chambers
Steven Burchett
Vicki Bergmann
Robert Thomas
Gregory Sjaardema
Roy Johnson
Peter Stirbis
Jeanne Ramage
William Mason
Stephen Montgomery
Randall Lober
Dennis Hayes
John Schamaun
Dan Hartley

Dale Preece
Norman Warpinski
Stephen Bauer
Brian Ehgartner
John Holland
Joseph Jung
John Pott

Alex Treadway
Mike Wernig
James Rice

* U.S. GOVERNMENT PRINTING OFFICE 1902--774-122/801 14

1
1
1
1
1
1
1
"1
1
1
1
1
1
1
1
1
1

(] N O\ et gk

-y e D G e
—}

Distribution - 15

6514

6352

6319
6115
6352
6410
7141
7151
7613-2

8523-2

Jim Fisk

Mike Rightlcy
Joel Miller
Douglas Ammerman
Bill Robinson

Kim Mahin
George Johnson
Michael Chiesa
Bruce Kistler
Melvin Callabresi
Douglas Bammann
Juanita Benson
Lee Bertram
Mark Horstemeyer
James Lathrop

Arthur Ortega
William Winters

D.E. Miller

L.E. Shephard

F.W. Bingham

L.S. Costin

G.M. Gerstner-Miller for

100/124231 /SAND87-1305/NQ

G.M. Gerstner-Miller for

DRMS files

R.R. Richards

P. B. Davies

WMT Library

D.A. Dahlgren

Technical Library

Technical Publications

Document Processing for
DOE/OSTI

Central Technical Files




rronaLhY LEFT BLANK

v oAl R
THTEN L Vs

THIS PACE T3




SAND87-1305

The number in the lower right-hand corner
is an accession number used for Office of
Civilian Radioactive Waste Management
purposes only. it should not be used
when ordering this publication.

NNA.830305.0104




	Abstract
	Acknowledgements
	Contents
	Figures
	Tables
	1. Introduction
	1.1 Perspective
	1.2 Background
	1.3 Program Capabilities
	2. Governing Equations
	2.1 Kinematics
	2.2 Stress and Strain Rates
	2.3 Fundamental Equations
	3. Numerical Solution Procedure
	3.1 Time Integration Procedure
	3.2 The Functional or Objective Function
	3.3 Conjugate Gradient Algorithm
	3.4 Gradient Calculations
	3.5 Restarting the Algorithm
	3.6 Convergence
	4. Finite Element Calculations
	4.1 Element Library
	4.2 Finite Rotation Algorithm
	5. Constitutive Models
	5.1 Elastic/Plastic Material with Combined Hardening
	5.2 Elastic Truss Material
	6. Contact Surfaces
	6.1 Search Algorithm
	6.2 Kinematic and Force Conditions
	6.3 Diagonal Assembly
	7. Loads and Boundary Conditions
	7.1 Kinematic Boundary Conditions
	7.2 Traction Boundary Conditions and Distributed Loads
	8. Verification and Sample Problems
	8.1 Elastic Problems for Verification of Continuum and Truss Elements
	8.2 Isothermal Elastic/Phstic VeriBcation Problems
	References
	Appendix A JAC3D v6.1 Input Instructions
	Appendix B JAC3D v6.1 Output Description
	Appendix C Adding a New Constitutive Model to JAC3D
	Appendix D RIB and SEPDB Information
	DISTRlBUTlON

